首页|融合碳激励潜变量的低碳出行方式选择模型

融合碳激励潜变量的低碳出行方式选择模型

扫码查看
以计划行为理论与价值-信念-规范理论为理论基础,综合考虑影响出行者低碳出行意愿的潜变量,以分析出行者低碳出行行为及内在机理。基于杭州市实证数据,建立多原因多指标模型,标定潜变量适配值。构建混合选择模型与无潜变量的Logit模型,对比分析出行者工作日方式的选择行为。建立二元混合选择模型,分析碳激励下高碳人群的出行行为转变。结果表明,态度、知觉感知控制、激励态度等潜变量显著影响出行者的低碳出行意愿与出行方式选择,混合选择模型比无潜变量的Logit模型具有更好的拟合优度,预测精度提升了 4。6%,碳激励下 64。4%的高碳人群倾向于选择低碳出行,碳激励可以有效促进公众的出行方式转变,变量态度、出行时间在公众出行方式转变上存在一定的异质性。
Modeling low-carbon travel mode choice by incorporating carbon incentive latent variable
The latent variables affecting travelers'intention to low-carbon travel were comprehensively considered based on the theory of planned behavior and the theory of value-belief-norm in order to analyze travelers'low-carbon travel behaviors and internal mechanisms.A multi-cause and multi-indicator model was constructed by using the empirical data of Hangzhou,and the values of latent variables were calibrated.A hybrid choice model and a Logit model without latent variables were constructed to compare and analyze travelers'weekday mode choice behavior.A binary hybrid choice model was constructed to analyze the travel behavior shift of high carbon people under carbon incentives.Results show that the latent variables such as attitude,perceived behavioral control,and view of incentive significantly affect the travelers'willingness to travel in a low-carbon way and the choice of travel modes.The hybrid choice model has a better goodness-of-fit than the Logit model without latent variables,and the prediction accuracy improves by 4.6%.64.4%of the high-carbon individuals tends to choose low-carbon modes under carbon incentives,showing that the carbon incentives can effectively promote travel modes shift behavior.There is some heterogeneity of the variables attitude and travel time in travel mode shift behavior.

transportation engineeringlow-carbon travelmode choicecarbon incentivehybrid choice model

何艳、孙轶琳、赵志健、疏阳

展开 >

浙江大学建筑工程学院,浙江杭州 310058

浙江大学平衡建筑研究中心,浙江杭州 310000

浙江大学建筑设计研究院有限公司,浙江杭州 310013

浙江大学工程师学院,浙江杭州 310058

展开 >

交通工程 低碳出行 方式选择 碳激励 混合选择模型

浙江省"尖兵""领雁"研发攻关计划资助项目国家自然科学基金资助项目

2023C0124052131202

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(8)
  • 26