首页|融合注意力机制和结构线提取的图像卡通化

融合注意力机制和结构线提取的图像卡通化

扫码查看
为了解决图像卡通化没有突出表达图像中的重要特征信息及边缘处理不足的问题,提出融合注意力机制和结构线提取的图像卡通化方法。构建融合注意力机制的生成器网络,通过空间和通道融合特征间的联系,从不同的特征中提取更加重要和丰富的图像信息。为了更好地实现对卡通纹理的学习,设计与全局并行的线提取区域处理模块(LERM),以便对卡通纹理的边缘区域进行对抗性训练。该方法不仅在重要区域和细节方面生成了高感知质量的卡通化图像,而且避免了内容和颜色的损失。大量的实验结果表明,利用该方法取得了更好的卡通风格化效果,验证了该方法的有效性,。
Image cartoonization incorporating attention mechanism and structural line extraction
An image cartoonization method that incorporated attention mechanism and structural line extraction was proposed in order to address the problem that image cartoonization does not highlight important feature information in the image and insufficient edge processing.The generator network with fused attention mechanism was constructed,which extracted more important and richer image information from different features by fusing the connections between features in space and channels.A line extraction region processing module(LERM)in parallel with the global one was designed to perform adversarial training on the edge regions of cartoon textures in order to better learn cartoon textures.This method not only generates cartoonish images with high perceptual quality in terms of important areas and details,but also avoids the loss of content and color.The extensive experimental results showed that the proposed method achieved better cartoonization,which validated the effectiveness of the method.

generative adversarial networkimage cartoonizationattention mechanismstructural line extrac-tionedge detection

李灿林、王新玥、马利庄、邵志文、张文娇

展开 >

郑州轻工业大学计算机与通信工程学院,河南郑州 450000

上海交通大学计算机科学与工程系,上海 200240

中国矿业大学计算机科学与技术学院,江苏徐州 221116

生成式对抗网络 图像卡通化 注意力机制 结构线提取 边缘检测

国家自然科学基金资助项目国家自然科学基金资助项目河南省科技攻关项目上海市科技创新行动计划人工智能科技支撑项目江苏省"双创博士"人才资助项目

619721576210626824210221100321511101200JSSCBS20211220

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(8)
  • 29