首页|基于对比学习的零样本对象谣言检测

基于对比学习的零样本对象谣言检测

扫码查看
现有的谣言检测模型通常依赖大规模人工标注的谣言数据集,标注成本高且谣言特征来源于已被辟谣的谣言。为了提高模型对未知谣言的检测能力,提出面向不同对象的谣言检测方法。基于零样本学习,将谣言数据集按照不同的对象划分为样本与内容互不重叠的多个数据集,从而实现零样本对象谣言检测任务;为了表征对象之间的关系构建通义掩码特征,从而设计区分通义掩码特征的代理任务;为了减少数据增强带来的噪声,引入面向对象的信息辅助文本作为特征,并将其与原语义向量进行线性变换。在此基础上,提出面向零样本对象谣言检测的基于代理任务的分层对比学习模型(ZPTHCL),可以通过迁移学习进行谣言检测。在一个基于对象的零样本谣言数据集和Ma-Weibo、Weibo20、Twitter15、Twitter16 这 4 个公开数据集上进行实验,结果表明所提出的对比学习零样本对象谣言检测模型性能更优。
Zero-shot object rumor detection based on contrastive learning
Existing rumor detection models often rely on large-scale manually annotated rumor datasets,which are costly and limited in their ability to detect unknown rumors due to the reliance on features derived from debunked rumors.To address this limitation,an approach for rumor detection targeted at different objects was proposed.Leveraging the zero-shot learning,the rumor dataset was divided into multiple datasets with non-overlapping samples and contents based on different objects,enabling the zero-shot object-oriented rumor detection task.Correspondingly,a universal mask feature was constructed to represent the relationship between objects,and a proxy task was designed to differentiate the universal mask feature.Additionally,object-oriented information-assisted text was introduced to reduce noise caused by data augmentation and was linearly transformed with the original vector semantics.Then,a proxy task-based hierarchical contrastive learning model(ZPTHCL)was presented for zero-shot object-oriented rumor detection,which leveraged transfer learning for rumor detection.Finally,experiments were conducted on a zero-shot rumor dataset based on objects and four publicly available datasets,Ma-Weibo,Weibo20,Twitter15 and Twitter16,demonstrating superior performance of the proposed contrastive learning zero-shot object-oriented rumor detection model.

rumor detectionzero-shot learningtransfer learningproxy taskcontrastive learning

陈珂、张文浩

展开 >

广东石油化工学院计算机学院,广东茂名 525000

广东石油化工学院电子信息工程学院,广东茂名 525000

谣言检测 零样本学习 迁移学习 代理任务 对比学习

国家自然科学基金资助项目广东省自然科学基金资助项目广东省普通高校重点科研平台和项目

611721452018A0303070322020ZDZX3038

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(9)