首页|卷积神经网络结合子域适应的低采样率肌电手势识别

卷积神经网络结合子域适应的低采样率肌电手势识别

扫码查看
为了提升模型识别低采样率肌电手势的性能,提出新的识别方法。通过信息扩展层对预处理后的低采样率肌电信号信息进行扩展,增强关键特征的表示。在特征提取网络中,利用子域适应网络提取源域与目标域中的域不变特征后进行域不变特征分类。使用NinaPro数据库中的DB1 和DB5 子数据库对所提方法进行评估。实验结果表明,所提方法识别 53 种和 52 种手势的最高准确率分别为 90。89%(DB1)、89。90%(DB5)和 82。01%(DB1)、77。07%(DB5),能够降低电极移位、肌肉疲劳、皮肤阻抗的变化和肌肉相对电极的相对运动等因素对低采样率肌电手势识别的影响。
Convolutional neural network combined with subdomain adaptation for low sampling rate EMG-based gesture recognition
A new recognition method was proposed to improve the performance of low sampling rate electromyography(EMG)-based gesture recognition.The information of the pre-processed low sampling rate EMG signal was extended by an information extension layer,and the representation of key features was enhanced.In the feature extraction network,domain invariant features in the source and target domains were extracted by the subdomain adaptation network,then the domain invariant features were classified.The proposed method was evaluated using the DB1 and DB5 sub-databases of the NinaPro database.Experimental results showed that the proposed method recognized 53 and 52 gestures with the highest accuracy of 90.89%(DB1),89.90%(DB5)and 82.01%(DB1),77.07%(DB5),respectively.The effects of factors on low sampling rate EMG-based gesture recognition are reduced by the proposed method,factors that include electrode shift,muscle fatigue,changes in skin impedance,and the relative movement of the muscle relative to the electrodes.

low sampling rate surface electromyographygesture recognitionsubdomain adaptationinforma-tion expansionsqueeze-and-excitation attention mechanism

周雕、熊馨、周建华、宗静、张琪

展开 >

昆明理工大学信息工程与自动化学院,云南昆明 650500

低采样率表面肌电 手势识别 子域适应 信息扩展 挤压与激励注意力机制

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(10)