首页|全局信息提取与重建的遥感图像语义分割网络

全局信息提取与重建的遥感图像语义分割网络

扫码查看
为了将遥感场景图像更好地进行分割,供给下游任务使用,提出多尺度注意力提取与全局信息重建网络。编码器引入多尺度卷积注意力骨干到遥感深度学习语义分割模型中。多尺度卷积注意力能够捕获多尺度信息,给解码器提供更丰富的全局深浅层信息。在解码器,设计了全局多分支局部Transformer块。多尺度逐通道条带卷积重建多尺度空间上下文信息,弥补全局分支存在的空间信息割裂,与全局语义上下文信息共同重建全局信息分割图。解码器末端设计极化特征精炼头。通道上利用softmax和sigmoid组合,构建概率分布函数,拟合更好的输出分布,修复浅层中潜在的高分辨率信息损失,指导和融合深层信息,获得精细的空间纹理。实验结果表明,网络实现了很高的精确度,在ISPRS Vaihingen数据集上达到82。9%的平均交并比,在ISPRS Potsdam数据集上达到87。1%的平均交并比。
Remote sensing image semantic segmentation network based on global information extraction and reconstruction
A network for multi-scale attention extraction and global information reconstruction was proposed in order to enhance the segmentation of remote sensing scene images for downstream tasks. A multi-scale convolutional attention backbone was introduced into the remote sensing deep learning semantic segmentation model in the encoder. Multi-scale convolutional attention can capture multi-scale information and provide richer global deep and shallow information to the decoder. A global multi-branch local Transformer block was designed in the decoder. Multi-scale channel-wise striped convolution reconstructed multi-scale spatial context information,compensating for the spatial information fragmentation in the global branch. The global information segmentation map was reconstructed together with global semantic context information. A polarized feature refinement head was designed at the end of the decoder. A combination of softmax and sigmoid was used to construct a probability distribution function on the channel,which fitted a better output distribution,repaired potential high-resolution information loss in shallow layers,guided and integrated deep information. Then fine spatial texture was obtained. The experimental results showed that high accuracy was achieved by the network,with a mean intersection over union (MIoU) of 82.9% on the ISPRS Vaihingen dataset and 87.1% on the ISPRS Potsdam dataset.

semantic segmentationTransformermulti-scale convolutional attentionglobal multi-branch local attentionglobal information reconstruction

梁龙学、贺成龙、吴小所、闫浩文

展开 >

兰州交通大学电子与信息工程学院,甘肃兰州 730070

兰州交通大学测绘与地理信息学院,甘肃兰州 730070

语义分割 Transformer 多尺度卷积注意力 全局多分支局部注意力 全局信息重建

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(11)