首页|考虑个体习惯的轮椅机器人人机共享避障方法

考虑个体习惯的轮椅机器人人机共享避障方法

扫码查看
为了避免个体操作习惯对智能轮椅机器人(WR)人机共享运动控制的影响,引入动态强化学习策略,基于三重奖励系统建立个体操作习惯与碰撞风险的关联特性,提出能够自适应用户行为及保证安全性的模糊强化学习状态融合式共享控制策略。为了实现机器人的智能操控,采用距离型模糊推理算法建立基于座椅压力的方向意图识别模型和机器人人机共享控制框架。面向用户意图方向与机器人实际方向的偏差度,分别基于高斯函数与偏差率建立当前奖励函数与预测奖励函数,以估计用户操作习惯。基于边界距离建立任务奖励函数,以估计人机安全性。基于模糊强化学习策略,利用三重奖励函数构建用户操作习惯与安全性的关联性,以动态调整共享控制中的用户控制权重,适应个体习惯,提高人机共享的操控精度和安全性。在实验室搭建试验环境,验证了所提算法的有效性。
Human-machine shared obstacle avoidance method for wheelchair robot considering individual habit
A dynamic reinforcement learning strategy was introduced to establish the correlation between individual operating habits and collision risk based on a triple-reward system in order to resolve the impact of individual operating habits on the shared motion control of intelligent wheelchair robots (WR). A fuzzy reinforcement learning state fusion-based shared control strategy was proposed,which could adapt to user behavior while ensuring safety. A distance fuzzy reasoning algorithm was employed to develop a direction intention recognition model based on seat pressure,which served as the foundation for establishing a human-machine shared control framework in order to achieve intelligent robot control. The current and predictive reward functions were established via the Gaussian function and deviation rate,respectively,focusing on the deviation between the user's intended direction and the robot's actual direction in order to estimate user operating habits. A task reward function was created according to boundary distance in order to predict human-machine safety. The correlation between user operating habits and safety was constructed by utilizing the fuzzy reinforcement learning strategy and the triple-reward system in order to dynamically adjust the user control weight within the shared control to adapt to individual habits. Then the precision and safety of human-machine shared control were enhanced. The effectiveness of the proposed algorithm was verified by experiments in a test environment.

intelligent wheelchair robotdistance fuzzy reasoning algorithmfuzzy reinforcement learningindividual habithuman-machine shared control

王义娜、曹晨、杨佳琪、俞彦军、傅国强、王硕玉

展开 >

沈阳工业大学电气工程学院,辽宁沈阳 110870

高知工科大学智能机械系,日本高知 7820003

智能轮椅机器人 距离型模糊推理算法 模糊强化学习 个体习惯 人机共享控制

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(11)