首页|基于改进SegFormer的太阳能电池缺陷分割模型

基于改进SegFormer的太阳能电池缺陷分割模型

扫码查看
针对太阳能电池制造过程中影响寿命和效率的缺陷问题,提出基于改进SegFormer的多尺度缺陷分割模型EL-SegFormer。该模型专注于太阳能电池缺陷分割任务,为生产提供可靠的检测手段。在网络浅层引入轻量级调制模块,利用多头混合卷积提取不同尺度缺陷的特征信息,以固定尺度卷积和感受野,有效捕获网络早期局部信息。通过聚合方式融合头部提取的特征信息,以更准确地定位太阳能电池的各种缺陷。以分级编码器形式融合浅层到深层的多尺度上下文信息输入解码器。解码器采用轻量级多层感知机,整合不同层级的特征信息生成分割掩码。加载遍历模型,利用缺陷图像分割掩码和标签掩码计算平均交并比(MIoU)。实验结果表明,EL-Seg-Former模型参数仅为68。2 M,在Buerhop2018数据集上的MIoU达到67。60%,高于近年最先进模型的MIoU。所提出的模型在复杂太阳能电池缺陷分割任务上表现较好,展现出强大的应用前景。
Solar cell defect segmentation model based on improved SegFormer
A multi-scale defect segmentation model,EL-SegFormer,was proposed based on an improved SegFormer architecture,aiming at the defects affecting the lifetime and efficiency in solar cell manufacturing.The model was specifically designed to segment defects in solar cells,providing a reliable detection tool for manufacturers.A lightweight modulation module was incorporated in the shallow layers of the network,and multi-head hybrid convolutions were used to capture defect features across various scales.Fixed-scale convolutions and receptive fields were employed to effectively capture early local information in the network.Diverse defects in solar cells can be accurately located by aggregating the extracted features.A hierarchical encoder structure was employed to integrate multi-scale contextual information from shallow to deep layers into the decoder.The decoder utilized a lightweight multi-layer perceptron to consolidate feature information from different levels and generate segmentation masks.The model was loaded and traversed to compute the mean intersection over union (MIoU) using the defect image segmentation masks and label masks.Experimental results indicated that EL-SegFormer,with only 68.2 M parameters,achieved the MIoU of 67.60% on the Buerhop2018 dataset,surpassing recent state-of-the-art models.This outstanding performance indicates the model's strong potential for addressing complex solar cell defect segmentation tasks,opening up promising avenues for its application in the solar cell manufacturing industry.

solar celldefect segmentationTransformermulti-head mixed convolutionaggregationlightweight multilayer perceptron

罗伟、颜作涛、关佳浩、韩建

展开 >

东北石油大学物理与电子工程学院,黑龙江大庆 163318

黑龙江省高校校企共建测试计量技术及仪器仪表工程研发中心,黑龙江大庆 163318

东北石油大学三亚海洋油气研究院,海南三亚 572024

太阳能电池 缺陷分割 Transformer 多头混合卷积 聚合 轻量级多层感知机

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(12)