首页|基于改进YOLOv5s网络的绝缘子缺陷检测

基于改进YOLOv5s网络的绝缘子缺陷检测

扫码查看
针对现有目标检测算法在复杂背景下绝缘子缺陷检测中容易出现漏检、误检和检测效率低等问题,改进YOLOv5s网络以提高绝缘子缺陷检测精度和速度。采用K-means++聚类分析绝缘子数据集,确定网络预设锚框尺寸;利用Hard-Swish激活函数替换主干网络第3、5、7层卷积模块的SiLU激活函数,并添加卷积注意力机制(CBAM),提高网络泛化能力;在主干网络与颈部网络间的跳跃链接添加CBAM,增强图像特征提取能力;利用交叉卷积替换颈部网络特征融合模块的残差结构,减少网络参数,提高检测速度。实验结果表明:基于改进YOLOv5s网络的绝缘子缺陷检测精度和速度分别为88。6%和69。4帧/s,优于Faster R-CNN、YOLOv3、YOLOv4、常规YOLOv5s等主流网络,满足绝缘子缺陷检测要求。
Insulator defect detection based on improved YOLOv5s network
The YOLOv5s network was improved aiming at the problem of missed detection,false detection and low efficiency of existing object detection algorithms for insulator defects in complex backgrounds.K-means++clustering was used to analyze the insulator dataset to determine the anchor box size preset by the network.The SiLU activation function of convolution module in the third,fifth,and seventh layers of the backbone network was replaced by Hard-Swish activation function,and the convolutional block attention mechanism (CBAM) was added to improve the network generalization ability.CBAMs were added to the skip links between backbone network and neck network to enhance the ability of image feature extraction.Moreover,the residual structure of feature fusion module of the neck network was replaced by the cross convolution to reduce the network parameters and improve the detection speed.The experimental results demonstrated that the detection accuracy and speed for the insulator defect by the improved YOLOv5s network were 88.6% and 69.4 frames per second,respectively,which were better than those of the popular networks such as Faster R-CNN,YOLOv3,YOLOv4 and regular YOLOv5s.The improved YOLOv5s network meets the requirements of insulator defect detection.

YOLOv5sinsulator defectactivation functionconvolutional block attention mechanismcross convolution

李运堂、张坤、李恒杰、朱文凯、金杰、章聪、王冰清、OPPONG Francis

展开 >

中国计量大学机电工程学院,浙江杭州 310018

YOLOv5s 绝缘子缺陷 激活函数 卷积注意力机制 交叉卷积

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(12)