首页|基于轻量化迁移学习的云边协同自然语言处理方法

基于轻量化迁移学习的云边协同自然语言处理方法

扫码查看
为了解决预训练语言模型(PLMs)由于参数量过大而无法在边缘设备上运行和训练的问题,引入轻量化的迁移模块,并将迁移模块和大型预训练语言模型分离部署,实现高效的云边协同迁移学习框架。利用所提框架,可以在仅微调少量参数的条件下将大型预训练语言模型的表征迁移到下游任务,还可以进行跨领域的云边协同推理。多个领域的下游任务可以协同共享同一个预训练语言模型,能有效节省计算开销。任务可以高效地分离部署在不同的设备上,实现多个任务的分离部署和预训练模型共享。在4项公开自然语言任务数据集上进行实验验证,结果表明,该框架的性能表现能达到完全微调BERT方法的95%以上。
Cloud-edge collaborative natural language processing method based on lightweight transfer learning
A lightweight transfer module was introduced to re solve the problem that current pre-trained language models (PLMs) cannot be operated and trained on edge devices due to the excessive number of parameters.The deployment of the transfer module was separated from the large PLM,and an efficient cloud-side collaborative transfer learning framework was implemented,which could transfer PLM to downstream tasks with only a small number of parameters fine-tuned.Cross-domain cloud-side collaborative deployment was also supported.Downstream tasks in multiple domain can collaboratively share the same PLM,which effectively saves computing overhead.Tasks can be efficiently separated and deployed on different devices to realize the separate deployment of multiple tasks and the sharing of PLM.Experiments on four public natural language processing task datasets were conducted,and the results showed that the performance of this framework was over 95% of that of fully fine-tuned BERT methods.

natural language processingtransfer learningcloud-edge collaborationcomputation efficiencymodel deployment

赵蕴龙、赵敏喆、朱文强、查星宇

展开 >

南京航空航天大学计算机科学与技术学院,江苏南京 211106

自然语言处理 迁移学习 云边协同 计算效率 模型部署

2024

浙江大学学报(工学版)
浙江大学

浙江大学学报(工学版)

CSTPCD北大核心
影响因子:0.625
ISSN:1008-973X
年,卷(期):2024.58(12)