首页|广义磁Boussinesq方程的整体正则性

广义磁Boussinesq方程的整体正则性

扫码查看
在全空间Rn(n≥2)中研究仅具有速度场耗散的广义磁Boussinesq方程的整体适定性.首先,利用方程的结构得到整体解的一致L2界;然后,利用对数型的插值不等式和改进的Gronwall不等式证明了整体解的一致H1界;最后,利用精细的能量估计,克服方程耗散缺失带来的困难,建立了解的整体一致Hs(s>1+n/2)先验估计,证明了该方程经典解的整体存在唯一性.
Global regularity of generalized MHD-Boussinesq equations
The purpose of this paper is to study the global well-posedness of generalized MHD-Boussinesq equations with only velocity dissipation in whole space Rn(n≥2).Firstly,by exploiting the structure of this system,we obtain the uniform L2-bound of the global solutions.Then,the uniform H1-bound of the global solutions is proved by making use of logarithmic type interpolation inequality and the improved Gronwall inequality.Finally,by using delicate energy estimates,we overcome the difficulty of lack of dissipation and establish the a priori uniform Hs(s>1+n/2)estimate which proves the global existence and uniqueness of the classical solutions to this system.

generalized MHD-Boussinesq equationspartial dissipationglobal regularity

杜美华

展开 >

青岛西海岸新区高级职业技术学校基础部,山东青岛 266000

广义磁Boussinesq方程 部分耗散 整体正则性

国家自然科学基金资助项目

12371232

2024

浙江大学学报(理学版)
浙江大学

浙江大学学报(理学版)

CSTPCD北大核心
影响因子:0.709
ISSN:1008-9497
年,卷(期):2024.51(5)