信息与电子工程前沿(英文)2024,Vol.25Issue(1) :64-83,后插16.DOI:10.1631/FITEE.2300410

人工智能文本生成的进展与挑战

Advances and challenges in artificial intelligence text generation

李冰 杨鹏 孙元康 胡中坚 易梦
信息与电子工程前沿(英文)2024,Vol.25Issue(1) :64-83,后插16.DOI:10.1631/FITEE.2300410

人工智能文本生成的进展与挑战

Advances and challenges in artificial intelligence text generation

李冰 1杨鹏 1孙元康 1胡中坚 1易梦1
扫码查看

作者信息

  • 1. 东南大学计算机科学与工程学院,中国南京市,210000;东南大学计算机网络和信息集成教育部重点实验室,中国南京市,210000
  • 折叠

摘要

文本生成是人工智能和自然语言处理的重要研究领域,为人工智能生成内容的快速发展提供了关键技术支撑.该任务基于自然语言处理、机器学习和深度学习等技术,通过训练模型学习语言规则,自动生成符合语法和语义要求的文本.本文对文本生成的主要研究进展进行梳理和系统性总结,对近几年文本生成相关文献进行综合调研,并详细介绍相关技术模型.此外,针对典型文本生成应用系统进行介绍.最后,对人工智能文本生成的挑战和未来研究方向进行分析和展望.得出以下结论,提高生成文本的质量、数量、交互性和适应性有助于从根本上推动人工智能文本生成的发展.

Abstract

Text generation is an essential research area in artificial intelligence(AI)technology and natural language processing and provides key technical support for the rapid development of AI-generated content(AIGC).It is based on technologies such as natural language processing,machine learning,and deep learning,which enable learning language rules through training models to automatically generate text that meets grammatical and semantic requirements.In this paper,we sort and systematically summarize the main research progress in text generation and review recent text generation papers,focusing on presenting a detailed understanding of the technical models.In addition,several typical text generation application systems are presented.Finally,we address some challenges and future directions in AI text generation.We conclude that improving the quality,quantity,interactivity,and adaptability of generated text can help fundamentally advance AI text generation development.

关键词

人工智能文本生成/自然语言处理/机器学习/深度学习

Key words

AI text generation/Natural language processing/Machine learning/Deep learning

引用本文复制引用

基金项目

National Natural Science Foundation of China(62272100)

Consulting Project of Chinese Academy of Engineering(2023-XY-09)

Major Project of the National Social Science Fund of China(21ZD11)

Fundamental Research Funds for the Central Universities China()

出版年

2024
信息与电子工程前沿(英文)
浙江大学

信息与电子工程前沿(英文)

CSTPCD
影响因子:0.371
ISSN:2095-9184
参考文献量2
段落导航相关论文