首页|Deep3DSketch-im:基于人工智能从单个手绘草图快速生成高保真三维模型

Deep3DSketch-im:基于人工智能从单个手绘草图快速生成高保真三维模型

扫码查看
人工智能生成内容(AIGC)在语言和图像领域的崛起值得注意,但由于其复杂性和缺乏训练数据,基于人工智能生成三维模型仍未被充分探索.通过计算机辅助设计(CAD)创建三维内容的传统方法需大量人力和专业知识,这对于新手用户来说具有挑战性.为解决此问题,提出一种基于草图的三维建模方法,名为Deep3DSketch-im,它利用单个手绘草图进行建模.由于草图的稀疏性和模棱两可性,这是一项具有挑战性的任务.Deep3DSketch-im使用一种称作"有符号距离场(SDF)"的新型数据表示,通过将隐式连续场整合至从草图到三维模型的过程,以及一个特别设计的可以捕捉点和局部特征的神经网络,改进从草图到三维模型的过程.进行了大量实验证明该方法的有效性,在合成数据集和真实数据集上均取得更优的性能.此外,用户研究报告显示,用户对Deep3DSketch-im生成的结果更加满意.我们相信,Deep3DSketch-im有潜力通过为新手用户提供直观易用的解决方案来彻底改变三维建模的过程.
Deep3DSketch-im:rapid high-fidelity AI 3D model generation by single freehand sketches
The rise of artificial intelligence generated content(AIGC)has been remarkable in the language and image fields,but artificial intelligence(AI)generated three-dimensional(3D)models are still under-explored due to their complex nature and lack of training data.The conventional approach of creating 3D content through computer-aided design(CAD)is labor-intensive and requires expertise,making it challenging for novice users.To address this issue,we propose a sketch-based 3D modeling approach,Deep3DSketch-im,which uses a single freehand sketch for modeling.This is a challenging task due to the sparsity and ambiguity.Deep3DSketch-im uses a novel data representation called the signed distance field(SDF)to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points,and a specially designed neural network that can capture point and local features.Extensive experiments are conducted to demonstrate the effectiveness of the approach,achieving state-of-the-art(SOTA)performance on both synthetic and real datasets.Additionally,users show more satisfaction with results generated by Deep3DSketch-im,as reported in a user study.We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.

Content creationSketchThree-dimensional(3D)modeling3D reconstructionShape from XArtificial intelligence(AI)

陈天润、曹润龙、李泽健、臧影、孙凌云

展开 >

浙江大学计算机科学与技术学院,中国 杭州市,310027

湖州师范学院信息工程学院,中国湖州市,313000

浙江大学软件学院,中国 杭州市,310027

内容创作 草图 三维建模 三维重建 从X到形状 人工智能

National Key R&D Program of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaPublic Welfare Research Program of Huzhou Science and Technology Bureau,China

2022YFB33033016200620862107035622070242022GZ01

2024

信息与电子工程前沿(英文)
浙江大学

信息与电子工程前沿(英文)

CSTPCD
影响因子:0.371
ISSN:2095-9184
年,卷(期):2024.25(1)
  • 4