信息与电子工程前沿(英文)2024,Vol.25Issue(5) :685-700,中插1-中插3,后插6.DOI:10.1631/FITEE.2300156

基于声誉机制的算力网络资源利用率和用户满意度联合优化

Reputation-based joint optimization of user satisfaction and resource utilization in a computing force network

付月霞 王晶 陆璐 唐琴琴 张晟
信息与电子工程前沿(英文)2024,Vol.25Issue(5) :685-700,中插1-中插3,后插6.DOI:10.1631/FITEE.2300156

基于声誉机制的算力网络资源利用率和用户满意度联合优化

Reputation-based joint optimization of user satisfaction and resource utilization in a computing force network

付月霞 1王晶 1陆璐 1唐琴琴 2张晟3
扫码查看

作者信息

  • 1. 中国移动通信有限公司研究院,中国 北京市,100053
  • 2. 紫金山实验室,中国南京市,211111
  • 3. 中国移动通信集团有限公司,中国 北京市,100033
  • 折叠

摘要

随着算力和网络融合的发展,在算力网络(CFN)中统筹考虑多个提供商的算力资源和网络资源逐渐成为一种新趋势.然而,由于每个算网资源提供商(CNRP)只考虑自身利益,与其他CNRP存在竞争关系,因此引入多个CNRP会造成缺乏信任和难以统一调度的问题.此外,多个并发用户的需求各不相同,因此迫切需要研究如何在多对多的基础上优化匹配用户和CNRP,从而提高用户满意度,保证和提高有限资源的利用率.首先采用基于贝塔分布函数的声誉模型衡量CNRP可信度,并提出基于性能的声誉更新模型.其次,将问题形式化为一个约束多目标优化问题,并使用改进的快速精英非支配排序遗传算法(NSGA-Ⅱ)找到可行解.本文进行大量仿真实验评估所提算法.仿真结果表明,所提模型、问题表述、和NSGA-Ⅱ是有效的,NSGA-Ⅱ可以找到CFN的帕累托集,提高用户满意度和资源利用率.此外,帕累托集所提供的一组解决方案根据实际情况为用户和CNRP的多对多匹配问题提供更多选择.

Abstract

Under the development of computing and network convergence,considering the computing and network resources of multiple providers as a whole in a computing force network(CFN)has gradually become a new trend.However,since each computing and network resource provider(CNRP)considers only its own interest and competes with other CNRPs,introducing multiple CNRPs will result in a lack of trust and difficulty in unified scheduling.In addition,concurrent users have different requirements,so there is an urgent need to study how to optimally match users and CNRPs on a many-to-many basis,to improve user satisfaction and ensure the utilization of limited resources.In this paper,we adopt a reputation model based on the beta distribution function to measure the credibility of CNRPs and propose a performance-based reputation update model.Then,we formalize the problem into a constrained multi-objective optimization problem and find feasible solutions using a modified fast and elitist non-dominated sorting genetic algorithm(NSGA-Ⅱ).We conduct extensive simulations to evaluate the proposed algorithm.Simulation results demonstrate that the proposed model and the problem formulation are valid,and the NSGA-Ⅱ is effective and can find the Pareto set of CFN,which increases user satisfaction and resource utilization.Moreover,a set of solutions provided by the Pareto set give us more choices of the many-to-many matching of users and CNRPs according to the actual situation.

关键词

算力网络/资源调度/基于性能的声誉/用户满意度

Key words

Computing force network/Resource scheduling/Performance-based reputation/User satisfaction

引用本文复制引用

基金项目

国家自然科学基金(2022ZD0115303)

Beijing Outstanding Young Engineers Innovation Studio,China(2023)()

Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Foundation(CMYJY-202200536)

出版年

2024
信息与电子工程前沿(英文)
浙江大学

信息与电子工程前沿(英文)

CSTPCD
影响因子:0.371
ISSN:2095-9184
参考文献量43
段落导航相关论文