双向同带泵浦的3.2 μm掺镝氟化物光纤激光器数值研究
Numerical study of a bi-directional in-band pumped dysprosium-doped fluoride fiber laser at 3.2 μm
李灵景 1马春阳 2赵年 1彭杰 1刘斌 1嵇海宁 1王雨辰 3唐平华1
作者信息
- 1. 湘潭大学物理与光电工程学院,中国湘潭市,411105
- 2. 鹏城实验室电路与系统研究部,中国 深圳市,518055
- 3. 中国科学院上海光学精密机械研究所,中国 上海市,201899
- 折叠
摘要
掺镝氟化物光纤激光器在环境监测、实时传感和聚合物加工等方面具有重要应用.目前,在>3 μm的中红外区域获得高效率、高功率的掺镝氟化物光纤激光是科技前沿领域.通常,掺镝氟化物光纤激光器采用单向泵浦方案,但其存在光纤端面高热负载密度的缺点,限制了功率的提升.本研究基于速率方程和传输方程,数值研究了一种双向同带泵浦方案,旨在解决3.2 μm掺镝氟化物光纤激光器输出功率提升的限制,并提升其效率.仿真结果表明,双向同带泵浦的掺镝氟化物光纤激光器的光光效率可达75.1%,接近斯托克斯极限87.3%.同时,讨论了进一步提高掺镝氟化物光纤激光器效率的潜力.与单向泵浦相比,双向泵浦方案除了高效率外,还具有减轻光纤端面热负荷的固有优势.因此,该方案有望显著提高掺镝氟化光纤激光器在中红外波段的输出功率.
Abstract
Dy3+-doped fluoride fiber lasers have important applications in environment monitoring,real-time sensing,and polymer processing.At present,achieving a high-efficiency and high-power Dy3+-doped fluoride fiber laser in the mid-infrared(mid-IR)region over 3 μm is a scientific and technological frontier.Typically,Dy3+-doped fluoride fiber lasers use a unidirectional pumping method,which suffers from the drawback of high thermal loading density on the fiber tips,thus limiting power scalability.In this study,a bi-directional in-band pumping scheme,to address the limitations of output power scaling and to enhance the efficiency of the Dy3+-doped fluoride fiber laser at 3.2 μm,is investigated numerically based on rate equations and propagation equations.Detailed simulation results reveal that the optical-optical efficiency of the bi-directional in-band pumped Dy 3+-doped fluoride fiber laser can reach 75.1%,approaching the Stokes limit of 87.3%.The potential for further improvement of the efficiency of the Dy3+-doped fluoride fiber laser is also discussed.The bi-directional pumping scheme offers the intrinsic advantage of mitigating the thermal load on the fiber tips,unlike unidirectional pumping,in addition to its high efficiency.As a result,it is expected to significantly scale the power output of Dy3+-doped fluoride fiber lasers in the mid-IR regime.
关键词
中红外激光器/光纤激光器/双向泵浦Key words
Mid-infrared laser/Fiber laser/Bi-directional pumping引用本文复制引用
基金项目
Hunan Provincial Natural Science Foundation of China(2023JJ30596)
Hunan Provincial Natural Science Foundation of China(2022JJ30556)
Scientific Research Fund of Hunan Provincial Education Department,China(21B0136)
National Natural Science Foundation of China(62105209)
Shanghai Pujiang Program,China(22PJ1414900)
Shenzhen Government's Plan of Science and Technology,China(RCYX20210609103157071)
出版年
2024