首页|多跳有损自组网下多机器人集群分裂模型构建

多跳有损自组网下多机器人集群分裂模型构建

扫码查看
在多机器人集群系统中,不可靠的通信网络可能引发群体分裂现象,进而为集群任务带来不利影响。本文研究网络拓扑特征参数对集群分裂现象的影响,以期为多机器人集群系统的网络构建提供理论指导。具体地,首先针对多机器人集群系统提出一种分布式"通信—计算—执行"协议,以表征多跳有损自组织网络下机器人的信息交互和运动控制过程。该协议考虑了信息的单跳及多跳传输成功概率,并利用离散时间Olfati-Saber模型实现集群控制。基于该协议,针对特定初始状态下的集群场景构建了分裂预测模型。该模型明确了与集群分裂现象相关的关键系统状态特征及网络拓扑特征,可在确定性网络拓扑下根据系统初始状态完成群体分裂预测。根据这些特征,进一步利用基于反向传播神经网络的数据拟合方法,构建了集群分裂概率模型,可表征网络拓扑参数与集群分裂概率之间的函数关系。仿真结果验证了所提预测模型和集群分裂概率模型的有效性和准确性。最后,对多机器人集群自组网的构建提出指导建议。
Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks
We investigate the impact of network topology characteristics on flocking fragmentation for a multi-robot system under a multi-hop and lossy ad hoc network,including the network's hop count features and information's successful transmission probability(STP).Specifically,we first propose a distributed communication-calculation-execution protocol to describe the practical interaction and control process in the ad hoc network based multi-robot system,where flocking control is realized by a discrete-time Olfati-Saber model incorporating STP-related variables.Then,we develop a fragmentation prediction model(FPM)to formulate the impact of hop count features on fragmentation for specific flocking scenarios.This model identifies the critical system and network features that are associated with fragmentation.Further considering general flocking scenarios affected by both hop count features and STP,we formulate the flocking fragmentation probability(FFP)by a data fitting model based on the back propagation neural network,whose input is extracted from the FPM.The FFP formulation quantifies the impact of key network topology characteristics on fragmentation phenomena.Simulation results verify the effectiveness and accuracy of the proposed prediction model and FFP formulation,and several guidelines for constructing the multi-robot ad hoc network are concluded.

Multi-robot flockingFlocking fragmentation probabilityFragmentation predictionMulti-robot communication networks

李思岚、张绳昱、江涛

展开 >

华中科技大学网络空间安全学院6G移动通信研究中心,中国 武汉市,430074

华中科技大学武汉光电国家研究中心,中国 武汉市,430074

多机器人集群 集群分裂概率 分裂预测 多机器人通信网络

National Key Research and Development Program of China

2019YFB1803400

2024

信息与电子工程前沿(英文)
浙江大学

信息与电子工程前沿(英文)

CSTPCD
影响因子:0.371
ISSN:2095-9184
年,卷(期):2024.25(8)