首页|大学生校园行为画像大数据分析与研究

大学生校园行为画像大数据分析与研究

Big Data Analysis and Research on Campus Behavior Portrait of College Students

扫码查看
为了利用大数据技术优化高校教育管理,在研究方法上,基于大数据的理论框架,聚焦高等职业技术学院学生,进行数据搜集、行为数据分析与预测.以特定高校学生为对象,采用实证方法探究学生行为特征与预测模型,分析行为统计特点并预测未来行为趋势.研究发现,大数据技术可有效识别与预测高校学生行为模式,对高校管理和学生学习成效提升有重要支持作用.综合分析构建了精准学生行为画像,揭示行为规律,为高校提供个性化教育支持和完善决策支持系统.同时对未来研究方向进行展望,包括跨领域数据融合、实时数据分析与预测、个性化教育资源推荐等.
This paper mainly introduces how to use big data technology to optimize the education and management in colleges and universities.In terms of research methodology,this study adopts a big data theoretical framework and focuses on students at vocational colleges to collect data,analyze and predict their behavioral data.By taking a specific group of college students as the object,this study uses empirical methods to explore the behavioral characteristics and predictive models of students,and analyzes the statistical features of their behavior to predict future trends.The study found that big data technology can effectively identify and predict the behavior patterns of college students,providing important support for the improvement of college management and the enhancement of students'learning outcomes.Comprehensive analysis has been conducted to build a precise students behavior profile,revealing the behavioral patterns and providing personalized educational support and decision-making support for the college.At the same time,the study also prospects to future research directions,including cross-domain data fusion,real-time data analysis and prediction,and personalized educational resource recommendation.

campus behavior portraitbig databehavior analysis of college studentspersonalized education

张诚

展开 >

浙江工贸职业技术学院,浙江 温州 325003

校园行为画像 大数据 大学生行为分析 个性化教育

2024

浙江工贸职业技术学院学报
浙江工贸职业技术学院学报

浙江工贸职业技术学院学报

影响因子:0.264
ISSN:1672-0105
年,卷(期):2024.24(3)