首页|考虑数据预处理和特征选择的静力触探参数研究

考虑数据预处理和特征选择的静力触探参数研究

扫码查看
确定土性参数对岩土工程的设计与施工具有重要意义,静力触探测试(Cone penetration test,CPT)是主要的原位测试方法,利用该方法可以得到锥尖阻力,从而获得多种海洋土土性参数.以CPT勘察获得的锥尖阻力实测值为研究对象,通过分析土体空间位置、上覆土压力和孔隙率等特征,利用XGBoost算法构建机器学习模型,同时在建模中考虑数据预处理和特征选择以改善模型预测性能,其中数据预处理方式包括箱型图分析法和噪声平滑处理.提出了一种考虑数据预处理和特征选择的静力触探参数预测模型,实现对锥尖阻力的准确预测,并将该方法运用到浙江沿海某工程项目.研究结果表明:所提模型的预测值与实测值的R2为0.951,预测准确性较高.箱型图分析法与噪声平滑处理能够有效提高预测准确性,在输入集中加入孔隙率能够提升预测准确性.
Study on parameters of cone penetration test considering data pre-processing and feature selection
Determination of the parameters of soil is of great significance for the design and construction of geotechnical engineering.The cone penetration test (CPT)is one of the most widely used in-situ testing methods for marine soil.The cone tip resistance is measured by CPT and can be transformed to the various parameters of marine soil.In this paper,the cone tip resistance obtained from CPT survey is taken as the research object.By analyzing the characteristics of spatial location,overburden pressure and porosity,a machine learning model is established using the XGBoost algorithm.By considering data preprocessing and feature selection in the modeling process,the prediction performance of the model is improved.The data preprocessing methods include box plot analysis and noise smoothing.A marine soil parameter prediction model based on feature engineering and XGBoost is proposed to predict the cone tip resistance and this method is applied to a practical engineering project in Zhejiang Province.The research results show that the proposed model has a correlation coefficient of 0.951 between predicted values and measured values,indicating high prediction accuracy.Boxplot analysis and noise smoothing can effectively improve the prediction accuracy.When the soil porosity is used as an input,the prediction accuracy can further be improved.

cone penetration testcone tip resistancedata preprocessingXGBoostfeature selectionsoil porosity

汪明元、陈松庭、陈彪、曾少翔

展开 >

浙江华东建设工程有限公司,浙江 杭州 310014

中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122

浙江工业大学 土木工程学院,浙江 杭州 310023

静力触探测试 锥尖阻力 数据预处理 XGBoost 特征选择 孔隙率

2025

浙江工业大学学报
浙江工业大学

浙江工业大学学报

北大核心
影响因子:0.704
ISSN:1006-4303
年,卷(期):2025.53(1)