首页|基于BP神经网络的钱塘江河口江道容积预测研究

基于BP神经网络的钱塘江河口江道容积预测研究

扫码查看
钱塘江河口是著名的强潮河口,潮强流急,河床冲淤变幅大,对防洪排涝有较大影响,因此对江道容积预测提出更高的技术要求.针对传统回归分析法精度和率定便利性较低的问题,建立一种从4维到1维映射的河床容积BP神经网络模型,其平均误差率、最大误差率分别仅为2.65%、8.76%,相比传统的回归分析法更可靠且具有更高的预报精度,使用和更新较为方便,可运用于长、短期的江道容积变化预测,为钱塘江河口防汛和排涝工作提供技术支撑.此外,利用建立的神经网络模型,分析平均流量、前期容积与容积变化率的关系以及维持河床平衡容积所需的条件.结果表明,对于闸口—盐官段,4.0亿m3的前期江道容积为河床冲刷和淤积的临界值.
Research on Volume Prediction of Qiantang River Estuary Based on BP Neural Network
Qiantang River estuary is a famous estuary with strong tide and rapid flow,which has a great influence on flood control and drainage.Therefore,higher technical requirements are put forward for the forecast of river volume.Aiming at solving the problem of the low accuracy and convenience of the traditional regression analysis method,a BP neural network model of river bed volume mapping from 4D to 1D was established.Its average error rate and maximum error rate were only 2.65%and 8.76%respectively,which were more reliable and had higher prediction accuracy than the traditional regression analysis method,and it was more convenient to use and update.It can be applied to the long-term and short-term forecast of river volume change,and provide technical support for flood control and drainage of Qiantang River estuary.In addition,using the established neural network model,the relationship between the average flow,the pre-volume and the rate of volume change,as well as the conditions required to maintain the equilibrium volume of the river bed are analyzed.The results show that the pre-volume of 400 million m3 is the critical value for the erosion and sedimentation of the river bed from Zhakou to Yanguan.

river volume predictionBP neural networkQiantang River

朱韫泽、孙逸豪、何昆、李翔

展开 >

浙江省钱塘江流域中心,浙江 杭州 310016

浙江省水利河口研究院(浙江省海洋规划设计研究院),浙江 杭州 310017

浙江省钱塘江管理局勘测设计院有限公司,浙江 杭州 310016

江道容积预测 BP神经网络 钱塘江

2024

浙江水利科技
浙江省水利河口研究院 浙江省水利学会

浙江水利科技

影响因子:0.294
ISSN:1008-701X
年,卷(期):2024.52(5)