首页|基于机器学习的城市短期需水量预测研究

基于机器学习的城市短期需水量预测研究

扫码查看
城市水资源的合理利用是支撑城市快速发展和保障居民生活的重要基础,而有效的城市短期需水量预测是城市水资源合理利用的前提.针对某市供水区域的实际供水情况分别预测日需水量和30 min间隔时需水量.先用箱型图法判别历史数据异常值并回溯校正数据,再用随机森林特征重要度法分析特征.采用人工神经网络模型和随机森林模型预测日需水量的对比结果表明,随机森林模型的预测精度较高,预测结果的平均绝对百分比误差在3%以下.使用Prophet模型预测30 min间隔的时需水量,可为供水系统实时调度运行提供依据.
Research on Short-term Water Demand Forecasting of Cities Based on Machine Learning
The rational utilization of urban water resources is an important foundation to support the rapid development of cities and ensure the livelihood of residents,and effective forecasting of urban short-term water demand is the premise of rational utilization of urban water resources.According to the actual water supply situation of the water supply area of a city,the daily water demand and the water demand at the interval of 30 minutes were predicted respectively.Firstly,the box plot method was used to identify the outliers of the historical data and back-correct the data,and then the random forest feature importance method was used to analyze the features.The artificial neural network model and random forest model were used to predict the daily water demand,and the results showed that the prediction accuracy of the random forest model was high,and the average absolute percentage error of the prediction results was less than 3%.The Prophet model was used to predict the water demand at 30-minute intervals,and it could provide reference for real-time scheduling and operation.

water demand predictionrandom forestANNProphet model

鲍立万、傅泉、徐建华、江君福、张国晟、王艳

展开 >

台州市水务集团股份有限公司,浙江 台州 318000

台州城市水务有限公司,浙江 台州 318000

丹华水利环境技术(上海)有限公司,上海 200030

需水量预测 随机森林 人工神经网络(ANN) Prophet模型

2024

浙江水利科技
浙江省水利河口研究院 浙江省水利学会

浙江水利科技

影响因子:0.294
ISSN:1008-701X
年,卷(期):2024.52(5)