首页|基于RBF的点模型曲率估算

基于RBF的点模型曲率估算

Curvature estimation of Point-Sampled model based on RBF

扫码查看
点模型的曲率等微分属性的估算是点模型数字几何处理的基础工作,在点模型数字几何处理的后续工作,如点云简化、特征提取等方面发挥着非常重要的作用。为了较准确地估算点模型的曲率,文章提出一种基于径向基函数(RBF)的点模型曲率估算方法。首先利用kD树,对点模型采样点的最近邻域进行快速搜索;然后基于RBF,对采样点的最近邻域进行局部隐式曲面重构;最后根据经典微分几何理论,在RBF重构曲面上进行曲率估算,同时文章给出了该方法在点云简化中的应用。实验结果表明,该方法对点模型采样点曲率的估算比较精确,并且成功在点云简化中得以应用。
Curvature estimation of point model is the basic work of the point geometry processing , which plays an important role in the follow-up works, such as point clouds simplification and feature extraction, etc. Based on radial basis functions (RBF), an algorithm is presented for effectively estimating curvatures on point-sampled model in this paper. Firstly, the nearest neighbors of each sampled point are quickly found by using kD-tree. Then, the local implicit surface of sampled point that approximates its nearest neighbors is reconstructed based on RBF. Finally, the curvatures of sampled point are estimated by applying the classical differential geometry theory to each implicit surface and their application is given in the point clouds simplification. Some experimental results demonstrated that the method could accurately estimate the curvatures on point sampled model and be effectively applied.

point-sampled modelradial basis functionsnearest neighbordifferential geometrycurvaturepoint clouds simplification

张利军、张若男

展开 >

浙江万里学院,浙江 宁波 315100

上海海洋大学,上海 201316

点模型 径向基函数 最近邻域 微分几何 曲率 点云简化

浙江省教育厅项目宁波市自然科学基金

Y2013295342013A610111

2016

浙江万里学院学报
浙江万里学院

浙江万里学院学报

影响因子:0.216
ISSN:1671-2250
年,卷(期):2016.29(3)
  • 6