首页|基于机器学习筛选慢性鼻窦炎相关诊断基因及其与免疫微环境的关系分析

基于机器学习筛选慢性鼻窦炎相关诊断基因及其与免疫微环境的关系分析

扫码查看
目的 通过机器学习筛选出慢性鼻窦炎相关的诊断基因,分析其与慢性鼻窦炎免疫微环境中炎性细胞浸润的相关性.方法 从高通量基因表达数据库(GEO数据库)中获得慢性鼻窦炎相关基因芯片,选取有效训练集,使用R软件的"limma"程序包进行基因表达差异性分析,采用加权共表达分析进行相关基因筛选得到候选基因,通过3种算法得到慢性鼻窦炎相关诊断基因PLP1,采用ROC曲线评价PLP1在慢性鼻窦炎中的诊断价值,采用CIBERSORT算法分析慢性鼻窦炎的免疫微环境,对PLP1与免疫细胞浸润情况进行相关性分析.结果 慢性鼻窦炎样本和正常对照样本之间检测到184个相关基因,这些相关基因参与白细胞游走、免疫反应的细胞激活等生物学过程.通过3种算法对相关基因进行筛选,取交集最终得出PLP1为慢性鼻窦炎相关诊断基因.PLP1基因在训练集(GSE23552)和验证集(GSE179265)均表现为下调,且差异有统计学意义(P<0.05).ROC曲线显示,PLP1在训练集中的AUC为1.000,在验证集中的AUC为0.950.PLP1基因表达与多种免疫细胞浸润有相关性,PLP1表达量与嗜酸性粒细胞浸润的相关系数r=-0.7(P<0.001).结论 PLP1可作为慢性鼻窦炎相关诊断基因,其表达水平与嗜酸性粒细胞、M2巨噬细胞浸润情况呈负相关.
Screening of genes associated with chronic sinusitis diagnosis based on machine learning and analysis of their relationship with immune microenvironment
Objective To screen genes related to chronic sinusitis diagnosis by machine learning,and to analyze their correlation with inflammatory cell infiltration in the immune microenvironment of chronic sinusitis.Methods Chronic sinusitis related gene chip was obtained from Gene Expression Omnibus(GEO)public database,and was selected for effective training set;the gene expression difference was analyzed using limma program package of R software.The candidate genes were screened by weighted co-expression analysis,and the chronic sinusitis diagnosis-related gene PLP1 was obtained by three algorithms.ROC curve was used to evaluate the diagnostic value of PLP1 in chronic sinusitis,CIBERSORT algorithm was used to analyze the immune microenvironment of chronic sinusitis,and the correlation between PLP1 and immune cell infiltration was analyzed.Results A total of 184 related genes were detected while comparing chronic sinusitis samples and normal control samples.These related genes involved in biological processes such as white blood cell migration and cell activation of immune response.Three algorithms were used to screen related genes,and finally PLP1 was found to be the relevant gene for chronic sinusitis diagnosis.PLP1 gene was down-regulated in both training set(GSE23552)and validation set(GSE179265),and the difference was statistically significant(P<0.05).The ROC curve showed that the AUC of PLP1 was 1.000 in the training set while 0.950 in the verification set.PLP1 gene expression was correlated with a variety of immune cell infiltration,and the correlation coefficient(r)between PLP1 expression and eosinophilic cell infiltration was-0.7(P<0.001).Conclusion PLP1 can be used for diagnosis of chronic sinusitis,whose expression level is negatively correlated with eosinophils and M2 macrophage infiltration.

Machine learningChronic sinusitisPLP1Immune microenvironment

王珍珍、黄琦、黄钧涛、沈毅、邬振华

展开 >

315000 宁波市医疗中心李惠利医院耳鼻咽喉头颈外科

宁波市第二医院耳鼻咽喉头颈外科

机器学习 慢性鼻窦炎 PLP1 免疫微环境

浙江省医药卫生科技计划

2022KY295

2024

浙江医学
浙江省医学会

浙江医学

CSTPCD
影响因子:0.428
ISSN:1006-2785
年,卷(期):2024.46(5)
  • 19