首页|基于T1WI增强图像的多区域影像组学预测脑膜瘤脑侵犯:一项多中心研究

基于T1WI增强图像的多区域影像组学预测脑膜瘤脑侵犯:一项多中心研究

扫码查看
目的 探讨基于T,WI增强图像的多区域影像组学在术前预测脑膜瘤脑侵犯的应用价值.方法 回顾性分析2016年1月至2024年2月在温州医科大学附属第五医院(中心1)和丽水市人民医院(中心2)经病理检查证实为脑膜瘤患者的临床影像资料.中心1纳入297例患者,以7∶3的比例随机分为训练集208例(无脑侵犯152例,脑侵犯56例)和内部测试集89例(无脑侵犯65例,脑侵犯24例);中心2纳入的117例均作为外部测试集(无脑侵犯91例,脑侵犯26例).以单因素分析及多因素logistic回归分析筛选脑膜瘤脑侵犯的独立危险因素,并构建临床模型.分别基于[即肿瘤全体积(GTV)]及包含瘤周区域[即瘤内及瘤周体积(GPTV),GPTV1、GPTV2、GPTV3、GPTV4、GPTV5、GPTV10、GPTV15和GPTV20]的T1WI增强图像提取并筛选最佳影像组学特征,并采用支持向量机建立相应模型.选择内部测试集和外部测试集中平均AUC最高的模型作为最佳影像组学模型,并将其结果转换为影像组学评分(Rad-score).随后,基于临床危险因素和Rad-score构建联合模型,绘制列线图进行可视化.结果 性别(OR=4.073,P<0.001)、瘤周水肿(OR=4.202,P<0.001)为预测脑膜瘤脑侵犯的独立危险因素.在内部测试集中,GTV及不同范围GPTV的AUC为0.679~0.833;在外部测试集中,GTV及不同范围GPTV的AUC为0.612~0.808.其中,GPTV10具有最佳的预测效能(平均AUC为0.821).进一步将性别、瘤周水肿与Rad-score相结合建立联合模型,结果显示,联合模型在预测脑膜瘤脑侵犯展现出良好的效能,在训练集、内部测试集和外部测试集的AUC分别为0.937、0.879、0.845.结论 基于T1WI增强图像的GPTV10影像组学模型可在术前较好地预测脑膜瘤脑侵犯状态,进一步结合临床危险因素建立的联合模型能够更好地提升效能.
Multi-regional radiomics based on T1WI enhanced images for predicting brain invasion of meningioma
Objective To explore the application value of multi-region radiomics based on T1WI enhanced images in the preoperative prediction of brain invasion in patients with meningiomas.Methods A retrospective analysis was conducted on the clinical imaging data of patients with meningioma confirmed by pathology at the Fifth Affiliated Hospital of Wenzhou Medical University(Center 1)and Lishui People's Hospital(Center 2)from January 2016 to February 2024.A total of 297 patients in Center 1 were randomly divided into a training set(n=208,152 cases without brain invasion and 56 cases with brain invasion)and an internal testing set(n=89,65 cases without brain invasion and 24 cases with brain invasion)in a 7∶3 ratio;117 cases in Center 2 were set as an external test set,including 91 cases without brain invasion and 26 cases with brain invasion.Independent risk factors for meningioma brain invasion were screened using univariate analysis and multivariate logistic regression analysis,and a clinical model was constructed.The best radiomics features were extracted and screeed from T1WI enhanced images based on the intratumoral region[gross tumor volume(GTV)]and peritumoral region[gross and peritumoural volume(GPTV),GPTV1,GPTV2,GPTV3,GPTV4,GPTV5,GPTV10,GPTV15,and GPTV20],and corresponding models were established using support vector machines.The highest average AUC between the internal and external test sets was selected as the optimal radiomics model,and the results were converted into radiomics scores(Rad-score).Subsequently,a combination model was constructed based on clinical risk factors and Rad-score,and a nomogram was developed for visualization.Results Among clinical factors,gender(OR=4.073,P<0.001)and peritumoral edema(OR=4.202,P<0.001)were independent risk factors for predicting meningioma brain invasion.In the internal test set,the AUC of GTV and GPTV ranged from 0.679 to 0.833;in the external test set,the AUC of GTV and GPTV ranged from 0.612 to 0.808.Among them,GPTV10 had the best predictive performance(AUC=0.821).The combination of gender and peritumoral edema with Rad-score was applied to develop a nomogram model.The nomogram exhibited good performance in predicting meningioma brain invasion,with AUC of 0.937,0.879,and 0.845 in the training set,internal test set and external test set,respectively.Conclusion The GPTV10 radiomics model based on T1WI enhanced images can well predict the brain invasion of meningiomas before surgery,and a nomogram in combination of radiomics and clinical risk factors can further improve performance.

MeningiomaRadiomicsMagnetic resonance imagingBrain invasion

李程超、陈炜越、陈勇军、王伟康、卢陈英、纪建松

展开 >

323000 温州医科大学附属第五医院放射科,浙江省影像诊断与介入微创研究重点实验室

丽水市人民医院放射科

脑膜瘤 影像组学 磁共振成像 脑侵犯

2024

浙江医学
浙江省医学会

浙江医学

CSTPCD
影响因子:0.428
ISSN:1006-2785
年,卷(期):2024.46(23)