首页|基于灰阶超声及剪切波弹性成像的影像组学列线图预测肝细胞癌Ki-67表达水平的价值

基于灰阶超声及剪切波弹性成像的影像组学列线图预测肝细胞癌Ki-67表达水平的价值

扫码查看
目的 探讨基于灰阶超声(US)和剪切波弹性成像(SWE)的影像组学列线图对肝细胞癌(HCC)Ki-67表达水平的预测价值.方法 回顾性选取2016年1月至2024年3月于丽水市中心医院经手术病理检查证实为HCC共277例患者的临床病理及US和SWE检查资料,以7︰3比例随机分为训练集194例和验证集83例,根据免疫组化结果分为Ki-67高表达组和Ki-67低表达组.使用3D Slicer软件分别在US和SWE上沿病灶轮廓手动勾画感兴趣区.使用Pyradiomics软件提取影像组学特征,并采组内相关系数、Pearson相关分析和最小绝对收缩和选择算法(lasso)回归筛选最优影像组学特征.通过随机森林算法分别构建US、SWE和US+SWE共3种影像组学模型并获得影像组学评分.通过多因素logistic回归分析从临床指标中筛选Ki-67表达水平的独立预测因素并构建临床模型.选择效能最高的影像组学评分和临床独立预测因素构建列线图模型.采用ROC曲线评估各模型的预测效能.结果 在训练集和验证集中,Ki-67高表达组Ki-67与低表达组患者的性别、年龄、肝硬化、HBsAg、ALT、AST、白蛋白、国际标准化比值、Tbil、Dbil比较差异均无统计学意义(均P>0.05),肿瘤大小、甲胎蛋白水平比较差异均有统计学意义(均P<0.05).经lasso回归分别筛选出9、7、12个最优影像组学特征构建US、SWE和US+SWE影像组学模型,3种模型在训练集中的AUC分别为0.829、0.792、0.870,在验证集中的AUC分别为0.779、0.751、0.829.将肿瘤大小、甲胎蛋白作为独立预测因素构建临床模型,训练集和验证集的AUC分别为0.754、0.740.US+SWE影像组学评分联合肿瘤大小、甲胎蛋白构建了列线图预测模型,训练集和验证集AUC分别提高至0.926、0.867.结论 基于US+SWE影像组学评分联合临床因素构建的列线图模型对HCC患者Ki-67表达水平具有较好的预测价值,可辅助临床制定诊疗方案.
Gray-scale ultrasound and shear-wave elastography for predicting Ki-67 expression in hepatocellular carcinoma
Objective To investigate the predictive value of grayscale ultrasound (US) and shear wave elastography (SWE) for Ki-67 expresson in hepatocellular carcinoma (HCC).Methods A total of 277 HCC patients confirmed by surgical pathology admitted in Lishui Central Hospital from January 2016 to March 2024 were retrospectively analyzed.Patients were randomly divided into a training set and a validation set in a ratio of 7︰3.Patients were categorized into high and low Ki-67 expression groups based on immunohistochemistry results.The 3D Slicer software was used to manually outline the regions of interest on US and SWE images.Radiomics features were extracted using Pyradiomics,and the optimal features were selected using the intraclass correlation coefficient,Pearson correlation analysis,and least absolute shrinkage and selection operator (lasso) regression.Three radiomics models (US,SWE,and US+SWE) were constructed using the random forest algorithm,and radiomics scores were obtained.Independent predictors of Ki-67 expression from clinical indicators were identified to construct clinical model using multivariate logistic regression analysis.The best-performing radiomics scores and clinical independent predictors were combined to construct a nomogram.The predictive performance of prediction models was assessed with ROC curve.Results There were no statistically significant differences in gender,age,liver cirrhosis,HBsAg,ALT,AST,albumin,international standardized ratio,Tbil,and Dbil between patients with high Ki-67 expression and low Ki-67 expression in both training set and validation set (all P>0.05).However,there were significant differences in tumor size and alpha fetoprotein (AFP) levels (all P<0.05).Finaly 9,7,and 12 optimal radiomics features were selected through lasso regression to construct the US,SWE,and US+SWE radiomics models,respectively.The areas under ROC curve (AUCs) of these models were 0.829,0.792,0.870 in the training set and 0.779,0.751,0.829 in the validation set.Tumor size and AFP were identified as independent predictors to construct clinical model with AUCs of 0.754 and 0.740 in the training and validation sets,respectively.The AUCs of nomogram based on the combination of US+SWE radiomics scores with tumor size and AFP were 0.926 and 0.867 in the training and validation sets,respectively.Conclusion The nomogram based on the combination of US+SWE radiomics scores with clinical factors has good predictive value for Ki-67 expression levels in HCC patients,which may has the potential to guide clinical decision-making.

Hepatocellular carcinomaUltrasoundShear wave elastographyKi-67Radiomics

季超、吴爱芬、车汉洋

展开 >

323000 温州医科大学附属第五医院(丽水市中心医院)手术室

323000 温州医科大学附属第五医院(丽水市中心医院)超声科

323000 温州医科大学附属第五医院(丽水市中心医院)肝胆胰外科

肝细胞癌 超声 剪切波弹性成像 Ki-67 影像组学

2024

浙江医学
浙江省医学会

浙江医学

CSTPCD
影响因子:0.428
ISSN:1006-2785
年,卷(期):2024.46(24)