首页|基于深度学习的人体行为识别研究进展

基于深度学习的人体行为识别研究进展

Research progress in human behavior recognition based on deep learning

扫码查看
人体行为识别作为计算机视觉领域一个重要的研究热点,近年来备受关注,在智慧医疗、智慧农业、监控安防等多领域有着广泛的应用前景.随着深度学习技术的发展,将其应用在人体行为识别已经成为一种趋势.相较于传统的人体行为识别方式,基于深度学习的人体行为识别具有适应性强、鲁棒性高、速度快等优势,并且该方式准确率更高,识别效果更佳.首先简单介绍了基于手工提取特征的人体行为识别方法,然后从网络结构的角度对基于深度学习的方法进行梳理与分析,重点介绍了 3D卷积神经网络、双流网络、循环神经网络、Transformer等深度学习网络框架,并对目前该领域的常用数据集进行分析,同时对比部分算法在数据集UCF-101、HMDB-51上的表现,最后对当前该领域的研究进行总结与展望.
Human behavior recognition,as an important research hotspot in the field of computer vision,has received much attention in recent years and has broad application prospects in various fields such as smart healthcare,smart agriculture,monitoring and security.With the development of deep learning technology,its application in human behavior recognition has become a trend.Compared to traditional human behavior recognition methods,deep learning based human behavior recognition methods has ad-vantages such as strong adaptability high robustness,fast speed,and higher accuracy,resulting in better recognition results.The article provides a brief introduction to the human behavior recognition method based on manually extracted features,and then sorts out and analyzes deep learning based methods from the perspective of network structure,with a focuse on deep learning network frameworks such as 3D convolu-tional neural network,dual flow network,recurrent neural network,Transformer,etc.The commonly used datasets in this field,performance of some algorithms on datasets UCF-101 and HMDB-51,were also ana-lyzed and compared.Finally,the current research in this field were summarized and prospected.

behavior recognitiondeep learningthe network structurethe dataset

郭建军、叶俊伟、孔壹右、陈杰鑫、何国煌、姚赵忠、叶淑卿、彭益满、刘双印、冯大春、刘同来、曹亮、谢彩健

展开 >

仲恺农业工程学院信息科学与技术学院,广东 广州 510225

仲恺农业工程学院自动化学院,广东 广州 510225

广州顺生生物科技有限公司,广东 广州 511316

行为识别 深度学习 网络结构 数据集

2024

仲恺农业工程学院学报
仲恺农业工程学院

仲恺农业工程学院学报

影响因子:0.292
ISSN:1674-5663
年,卷(期):2024.37(4)