首页|磁约束可控核聚变装置的磁体系统综述

磁约束可控核聚变装置的磁体系统综述

扫码查看
[目的]磁约束可控核聚变方案被视为未来解决全球能源问题的重要途径,作为磁约束聚变装置的核心元件,磁体在产生和维持等离子体稳定状态中起着关键作用.为此,对国内外典型磁约束可控聚变装置的磁体结构和规格进行了综述.[方法]回顾了聚变磁体从铜基到低温超导乃至高温超导的技术演变,系统归纳了各类典型聚变装置的磁体系统结构及其性能参数.同时,探讨了当前磁体研发过程中面临的技术挑战,并对未来发展进行了展望.[结论]磁体技术的进步对于提升聚变装置性能和加速实现聚变能源的商业化至关重要.随着高温超导材料的应用和新型磁体设计的不断优化,聚变能源的实用化正逐步向现实迈进.
Overview of Magnetic Confinement Controlled Nuclear Fusion Reactors and Superconducting Magnet Technologies
[Objectives]Magnetic confinement fusion is regarded as a critical solution to future global energy challenges.As the central component of magnetic confinement fusion devices,magnets play a crucial role in generating and sustaining plasma stability.A review of the magnetic system structures and specifications in representative magnetic confinement fusion devices worldwide was provided.[Methods]The technological evolution of fusion magnets was reviewed,from copper-based to low-temperature superconducting,and finally to high-temperature superconducting magnets.The structure and performance parameters of magnetic systems in various typical fusion devices were summarized systematically.Additionally,the technical challenges in magnet development were explored and an outlook on future development trend was offered.[Conclusions]Advances in magnet technology are vital for enhancing the performance of fusion devices and accelerating the commercialization of fusion energy.With the increasing application of high-temperature superconducting materials and continuous optimization of magnet designs,the practical realization of fusion energy is becoming increasingly feasible.

magnetic confinement controlled nuclearhigh-temperature superconducting materialnew energyfusion energy resourcemagnetic confinement fusionTokamakfusion magnetsuperconductor

张家龙、宋彭、瞿体明

展开 >

清华大学机械工程系,北京市 海淀区 100084

清洁高效透平动力装备全国重点实验室(清华大学机械工程系),北京市 海淀区 100084

可控核聚变 高温超导材料 新能源 聚变能源 磁约束聚变 托卡马克 聚变磁体 超导体

2024

发电技术
华电电力科学研究院

发电技术

CSTPCD
影响因子:0.388
ISSN:2096-4528
年,卷(期):2024.45(6)