首页|人工智能将良性肺结节误判为高风险结节的原因分析

人工智能将良性肺结节误判为高风险结节的原因分析

扫码查看
[目的]探究人工智能(artificial intelligence,AI)在预测肺结节的恶性风险时将良性结节误判为高风险结节的原因.[方法]回顾性分析88例检查发现肺结节并于1个月内取得病理结果的患者资料,分别用AI和人工方法评估肺结节的良恶性,分析两种方法对肺结节的诊断准确率及被AI误诊的良性结节的特征.[结果]88例患者病理结果显示恶性结节59例,良性结节29例.AI组良性结节误诊率为82.8%(24/29),人工组为41.4%(12/29),两者对良性结节的诊断准确率差异有统计学意义(McNemar x2<0.001).AI对不同大小结节组间误诊率差异有统计学意义(x2=15.389,P<0.001).当良性结节出现毛刺征、分叶征、血管集束征、支气管截断征、空泡征、胸膜牵拉征等倾向于恶性结节的征象时,AI组的误诊率均大于人工组(88.2%vs 64.7%、100.0%vs 66.7%、100.0%vs 80.0%、100.0%vs 66.7%、90.0%vs 60.0%).当出现钙化、脂肪密度倾向于良性结节的征象时,AI组的误诊率大于人工组(80.0%vs20.0%、100.0%vs0).[结论]AI对肺结节的评估存在一定的局限性,AI还需进一步完善算法,结合临床、随访、全肺整体信息,以减少误判为高风险结节的概率.
Causes of Misdiagnosing Benign Pulmonary Nodules as High Risk Nodules by Artificial Intelligence
[Objective]To analyze the causes of misdiagnosing benign lung nodules as high-risk nodules by artificial intelligence(AI).[Methods]Imaging and pathological findings of 88 patients,who underwent biopsy or surgical treatment within 1 month after pulmonary nodules detected,were retrospectively analyzed.The pulmonary nodules on chest plain CT scan were evaluated by AI and radiologist physicians.Using pathologi-cal results as gold standard the diagnostic accuracy of both methods for pulmonary nodules was assessed,and the causes of misdiagnosing benign nodules as malignant by AI were analyzed.[Results]The pathological re-sults confirmed 59 malignant nodules and 29 benign nodules.The misdiagnosis rate of benign nodules was 82.8%(24/29)in AI method and 41.4%(12/29)in the manual method(McNemar x2 test P<0.001).When be-nign nodules showed spiculation sign,lobulation sign,vascular convergence sign,bronchial truncation sign,vacuole sign and pleural traction sign,the misdiagnosis rate in the AI group was higher than that in the man-ual group(88.2%vs 64.7%,100.0%vs 66.7%,100.0%vs 80.0%,100.0%vs 66.7%,90.0%vs 60.0%).When the nodule showing benign trending signs such as calcification and fat density,the misdiagnosis rate in the AI group was also higher than that in the manual group(80.0%vs 20.0%,100.0%vs 0).[Conclusion]AI has some limitations in the evaluation of pulmonary nodules,particularly it has high misdiagnosis rate for be-nign nodules,indicating that AI needs to further improve its algorithm to reduce the probability of misdiagnosis.

artificial intelligencelung nodulesmisdiagnosiscomputed tomography

朱含笑、饶钦盼、马琳莹、樊树峰

展开 >

浙江中医药大学第二临床医学院,浙江杭州 310053

浙江中医药大学附属第二医院,浙江杭州 310005

人工智能 肺结节 误诊 计算机断层扫描

浙江省中医药科技计划项目浙江中医药大学研究所教改项目

2020ZB117YJSAL2022001

2024

肿瘤学杂志
浙江省肿瘤医院 浙江省抗癌协会

肿瘤学杂志

CSTPCD
影响因子:0.83
ISSN:1671-170X
年,卷(期):2024.30(1)
  • 20