首页|一种基于点云神经网络的非均匀点阵逆向设计方法

一种基于点云神经网络的非均匀点阵逆向设计方法

扫码查看
点阵材料因其轻质、高强、可实现多功能设计等特点受到了高度的关注,并在航空航天、舰载设备等领域有所应用.均匀分布的点阵结构的结构效率并非最优,研究人员针对特定的点阵结构开展了一些非均匀点阵的设计方法研究,但是现有算法存在难以适应三维点阵、缺乏整体框架、设计参数过少等局限.针对有限元分析云图可以转化为位置与应力结合的矩阵形式的特点,提出一种基于点云神经网络的非均匀点阵设计方法,该方法以有限元分析中节点应力矩阵作为输入,以非均匀点阵设计参数作为输出,实现了有限元分析的逆运算.该方法利用边卷积和最大池化模块解决了矩阵化表示应力信息的交互性和无序性问题,较好地解决了点阵结构的非均匀设计问题.
Inverse Design of Pseudo Periodic Lattice Structures by Point Cloud Neural Network
Lattice materials have received significant attention due to their lightweight,high strength,and potential for mul-tifunctional design,and have been applied in fields such as aerospace and shipborne equipment.The structural efficiency of uni-formly distributed lattice structures is not optimal.Researchers have explored methods for designing non-uniform lattice structures for specific applications.However,the existing algorithms have limitations,such as difficulty in adapting to three-dimensional lat-tice structures,lack of an integrated framework,and insufficient design parameters.Taking advantage of the characteristic that fi-nite element analysis can be transformed into a matrix form combining position and stress,this study proposes a method for non-uniform lattice design based on point cloud neural network.The method takes the node stress matrix in finite element analysis as input,and the non-uniform lattice design parameter matrix as output,realizing the inverse operation of finite element analy-sis.The method utilizes edge convolution and max-pooling modules to address the interaction and disorder problems in represen-ting stress information in a matrix form,which can effectively solve the non-uniform design problem of lattice structures.

point cloud neural networkmaterial designinverse designfinite element

王荣、陈莹、王晓晶、谢强、胡振峰、梁秀兵

展开 >

军事科学院国防科技创新研究院,北京 100071

中国空气动力研究与发展中心,绵阳 621000

点云神经网络 材料设计 逆向设计 有限元

国家自然科学基金

52005504

2024

智能安全
军事科学院国防科技创新研究院

智能安全

ISSN:2097-2075
年,卷(期):2024.3(1)
  • 28