首页|神经网络驱动的机器视觉学习实现增材制造过程的自适应监控模型

神经网络驱动的机器视觉学习实现增材制造过程的自适应监控模型

扫码查看
随着增材制造(AM)技术的快速发展,其质量控制与过程监控逐渐成为研究焦点.致力于解决3D打印过程中出现的质量波动和缺陷问题,通过利用神经网络驱动的机器视觉系统实现对增材制造过程的高效自适应监控.采用卷积神经网络(CNN)对高分辨率的熔池图像数据进行深入分析,旨在实现对增材制造过程的实时检测和缺陷分类.实验数据通过激光金属沉积过程收集,并对数据进行了详尽的分析与标注,建立了一个全面且高质量的数据集.基于此数据集,开发了一个专门针对熔池图像识别的CNN模型,该模型有效地从复杂图像中提取关键特征,用于增材制造过程的监控与自适应调整.研究成果表明,所开发的模型在检测和分类增材制造过程中具有高准确率、高召回率和优秀的F1 分数,证明了其在提升增材制造过程精度和可靠性方面的有效性.通过对增材制造过程的实时监控和分析,展示了神经网络在机器视觉应用中的强大能力,为增材制造技术的质量控制和过程优化提供了新的思路.
Neural Network-Driven Machine Vision Learning for Adaptive Monitoring of Additive Manufacturing Processes
With the rapid advancement of additive manufacturing(AM)technology,its quality control and process monito-ring have increasingly become focal points of research.This study is dedicated to addressing quality fluctuations and defect issues in the 3D printing process by leveraging a neural network-driven machine vision system for efficient and adaptive monitoring of the AM process.Convolutional neural networks(CNNs)were utilized to conduct an in-depth analysis of high-resolution melt pool im-age data,aiming at real-time detection and classification of defects during the AM process.Experimental data were collected through a laser metal deposition process,and analysis and annotation were conducted,resulting in a comprehensive and high-quality dataset.Based on this dataset,a CNN model specifically designed for melt pool image recognition was developed,effec-tively extracting key features from complex images for the AM process.The findings demonstrate that the developed model exhibits high accuracy,recall,and excellent F1 scores in detecting and classifying defects in the AM process,validating its effectiveness in enhancing the precision and reliability of the AM process.Through real-time monitoring and analysis of the AM process,this research showcases the potent capabilities of neural networks in machine vision applications,offering new avenues for quality con-trol and process optimization in additive manufacturing technology.

additive manufacturingmachine vision learningconvolutional neural networkadaptive monitoring

李竞龙、邢悦、王浩旭、陈永雄、梁秀兵

展开 >

军事科学院国防科技创新研究院,北京 100071

增材制造 机器视觉学习 卷积神经网络 自适应监控

2024

智能安全
军事科学院国防科技创新研究院

智能安全

ISSN:2097-2075
年,卷(期):2024.3(1)
  • 25