首页|具身智能形态控制方法综述

具身智能形态控制方法综述

扫码查看
近年来,基于强化学习的具身智能在机器人控制领域得到了广泛的应用.具身智能关注智能体对环境的感知和交互,而这种感知和交互在物理层面上就是智能体物理形态的控制和优化.因此,具身智能研究的问题都是由形态、学习和行为的相互作用产生的.其中,形态信息的引入可以有效地约束由机器人的复杂形态带来的巨大的搜索空间.本文重点关注具身智能的形态控制部分,围绕基于强化学习的形态控制方法展开.介绍了当前具身智能形态控制的研究进展和相关问题,重点是在形态信息引入和模型迁移方面;总结了当前的热点方法,主要是图神经网络和Trans-former方法;并对未来的发展方向进行了展望.
A Review of Morphology-Based Approaches to Intelligent Control of Embodiment
In recent years,embodied intelligence based on reinforcement learning has been widely applied in the field of robot control.Embodied intelligence focuses on the perception and interaction of an intelligent body on the environment,which is the control and optimization of the physical form of the intelligent body at the physical level.Therefore,the problems studied in embod-ied intelligence are generated by the interaction of morphology,learning and behavior.Among them,the introduction of morpho-logical information can effectively constrain the huge search space brought by the complex morphology of robots.In light of this,this research focuses on the morphological control part of embodied intelligence and centers on the morphological control method based on reinforcement learning.It introduces the current research progress and related problems of morphological control for em-bodied intelligence,focusing on morphological information introduction and model migration,summarizes the current hot meth-ods,graph neural network method and transformer method respectively,and gives an outlook on the future development direction.

embodied intelligencerobot controlreinforcement learninggraph neural networks

申铠瑶、聂一鸣、商尔科、戴斌

展开 >

军事科学院国防科技创新研究院,北京 100071

具身智能 机器人控制 强化学习 图神经网络

2024

智能安全
军事科学院国防科技创新研究院

智能安全

ISSN:2097-2075
年,卷(期):2024.3(1)
  • 33