首页|改进SVM实现的无人集群网络入侵检测框架

改进SVM实现的无人集群网络入侵检测框架

扫码查看
分布式无人集群之间的异构通信网络具有结构复杂、覆盖面积大、数据流量大等特征,而传统网络入侵检测框架数据吞吐能力不足,限制了无人集群的抗入侵、防失控能力的发展.本文提出了一种改进SVM实现的无人集群网络入侵检测框架,采用管线(pipeline)对支持向量机算法进行改进既满足了集成学习的需求,实现了网络入侵的检测和分类,同时也与分布式无人集成框架具有更好的适配性,并能够依赖Spark流式框架使其适应大规模通信数据的快速计算处理需求.通过实验对改进后的框架进行了性能评估,结果表明:该检测框架在准确性、实时性等多个方面均具备良好的性能,能够有效地支撑无人集群进行通信网络的入侵检测.
An Improved SVM-based Framework for Unmanned Swarm Network Intrusion Detection
The heterogeneous communication network between distributed unmanned swarms possesses such characteristics as complex structure,large coverage area,and high data traffic.However,the insufficient data throughput of traditional network in-trusion detection frameworks has limited the development of anti-intrusion and anti-loss-of-control capabilities of unmanned swarms.In light of this,this study proposes an improved network intrusion detection framework for unmanned clusters based on SVM,of which improvements of the support vector machine algorithm by adopting the pipeline can not only meet the requirements of ensemble learning,but also realize the detection and classification of network intrusion.The improvements of pipeline have bet-ter adaptability to the distributed unmanned integration framework,and it can rely on the Spark streaming framework to adapt to the rapid calculation and processing requirements of large-scale communication data.Through experimental evaluation of the im-proved framework,the results show that it possesses excellent performance in terms of accuracy,real-time response,and other as-pects,effectively supporting the need for intrusion classification detection of large-scale data in unmanned swarms.

SVMpipelineunmanned platformintrusion detection

杨绍卿、张钰、邓宝松

展开 >

军事科学院国防科技创新研究院,北京 100071

智能博弈与决策实验室,北京 100071

63963部队,北京 100072

SVM pipeline 无人平台 入侵检测

2024

智能安全
军事科学院国防科技创新研究院

智能安全

ISSN:2097-2075
年,卷(期):2024.3(3)