首页|PoisonEEG:基于频率变换的EEG后门攻击新方法

PoisonEEG:基于频率变换的EEG后门攻击新方法

扫码查看
由于深度学习模型的巨大成功,基于脑电的脑机接口取得了广泛的应用.然而,深度学习模型容易受到后门攻击,特别是在图像和自然语言领域,后门攻击已取得显著成果.然而,由于脑电数据的复杂性、不稳定性以及数据分布的不均衡性,针对脑电数据设计隐秘而复杂的攻击仍然具有挑战性.现有的后门攻击方法存在一定限制,即需要参与模型的训练阶段才能保持高隐蔽性.为了解决这些限制,本文提出了一种名为PoisonEEG的后门攻击方法,旨在无需参与模型训练阶段即可操纵脑机接口将脑电数据错误分类到目标类别.具体而言,PoisonEEG后门攻击包括3个阶段:首先,为目标类别选择一个样本作为触发器;其次,通过强化学习为触发器学习最优的注入电极和频段的掩码;最后,基于学习到的掩码对投毒集数据和触发器的频谱进行线性插值.本文在情绪识别和运动想象两个脑电任务上进行了实验,结果表明:PoisonEEG攻击方法不仅有效,而且具有较高的隐蔽性和鲁棒性,能够在复杂的脑电数据环境中实现对模型的操控.
PoisonEEG:A New Way to EEG Backdoor Attack Based on Frequency Transformation
With the remarkable success of deep learning models,EEG-based brain-computer interfaces ( BCIs) have gained widespread application.However,deep learning models are well-known to be vulnerable to backdoor attacks.While backdoor at-tacks have achieved significant success in image and natural language domains,designing a covert and sophisticated attack against EEG data remains challenging due to the complexity,instability,and imbalanced distribution of EEG data.The existing backdoor attacks are limited by the requirement of participating in the model training phase,without which the attacks fail to maintain a high level of concealment.To address these limitations,a novel backdoor attack method called PoisonEEG is proposed,which allows at-tackers to manipulate the classification of EEG data into a target class without participating in the model training stage.Specifically,PoisonEEG involves three phases:first,selecting a sample as a trigger for the target class;second,using rein-forcement learning to learn optimal masks for the injection electrodes and frequency bands of the trigger;third,performing linear interpolation on the spectral features of the poisoned dataset and the trigger based on the learned masks.Experiments were conduc-ted on two EEG tasks—emotion recognition and motor imagery.The results demonstrate that the PoisonEEG attack is effective,covert,and robust,successfully manipulating models in complex EEG data environments.

based brain-computer interface (BCI )electroencephalogrambackdoor attackreinforcement learningfrequency transformation

宋鑫浩、何德轩、刘轩豪、郑伟龙

展开 >

上海交通大学计算机科学与工程系,上海 200240

脑机接口 脑电 后门攻击 强化学习 频率变换

2024

智能安全
军事科学院国防科技创新研究院

智能安全

ISSN:2097-2075
年,卷(期):2024.3(4)