首页|基于遗传算法优化概率神经网络算法的海上移动目标分类与识别

基于遗传算法优化概率神经网络算法的海上移动目标分类与识别

扫码查看
为维护我国海洋安全利益,对海上移动目标分类与识别进行研究,进而对海上移动目标实施有效追踪和管理.首先,根据海上移动目标运动规律,对其特征指标进行提取,得到方向速度、平均速度、最大速度、速度的标准差、平均加速度和航迹跨度范围6个海上移动目标特征指标;其次,采用基于模拟退火算法的模糊C均值聚类算法对海上移动目标特征指标数据进行分析,得到6个海上移动目标特征指标的聚类中心;最后,提出基于遗传算法优化概率神经网络算法,对海上移动目标进行识别.仿真结果表明,该方法与K近邻(K-Nearest Neighbor,KNN)算法、决策树(Decision Tree,DT)算法等机器学习算法相比,可以进行更有效的分类与识别,精度更高.
Classification and Recognition of Moving Targets on Sea Based on Genetic Algorithm Optimization of Probabilistic Neural Network Algorithm
In order to safeguard our country's maritime security interests,it is of great significance to study the classification and identification of moving targets at sea,and then effectively track and manage key targets.In this study,first,by extracting the characteristics of moving targets on sea,six moving characteristic indicators including moving direction velocity,average velocity,maximum velocity,standard deviation of velocity,average acceleration and track span range are obtained.Then,the characteristic indicator data is analyzed through simulated annealing algorithm fuzzy C-means clustering to obtain six cluster centers.Finally,a method for identifying moving targets on the sea based on genetic algorithm optimization probability neural network is pro-posed.Simulation results show that,compared with machine learning methods such as KNN algorithm and decision tree,this meth-od can more effectively classify and identify moving targets on the sea,providing technical support for maintaining my maritime se-curity.

maritime securitymoving targetclassification and recognitiongenetic algorithmprobabilistic neural network

曹瑾、刘晓芬、王炳垚

展开 >

武警研究院,北京 100101

武警后勤学院,天津 300309

海洋安全 移动目标 分类与识别 遗传算法 概率神经网络

2024

智能安全
军事科学院国防科技创新研究院

智能安全

ISSN:2097-2075
年,卷(期):2024.3(4)