首页|基于多特征聚类的异常轨迹检测方法研究

基于多特征聚类的异常轨迹检测方法研究

扫码查看
随着智能感知、无线定位和互联网信息技术的快速发展,各类移动物体的轨迹数据呈现爆发式增长。由于多种误差因素的存在,轨迹数据中通常包含异常值,并且现有的轨迹异常检测技术通常忽略了轨迹的局部特征,这均会影响数据分析的准确性。文章提出一种基于多特征聚类的异常检测方法,通过停留点识别与子轨迹划分,结合轨迹的空间特征、时间特征、运动特征和统计特征,使用自适应参数聚类探测局部与全局的异常轨迹。结果显示,该方法能够有效识别异常轨迹,具有高效性和准确性,在城市管理、道路规划、智能驾驶等领域具有一定的应用潜力。
Research on anomaly trajectory detection method based on multi-feature clustering
With the rapid development of intelligent perception,wireless positioning and Internet information technology,the trajectory data of all kinds of moving objects has shown explosive growth. Due to the existence of multiple error factors,the trajectory data usually contains outliers,and the existing trajectory anomaly detection technologies usually ignore the local characteristics of the trajectory,which affects the accuracy of data analysis. This paper proposes an anomaly detection method based on multi-feature clustering,which combines the spatial,temporal,kinematic and statistical characteristics of the trajectory with the identification of stop points and the division of sub-trajectory,and uses adaptive parameter clustering to detect the local and global anomaly trajectory. The results show that this method can effectively identify abnormal trajectories,with high efficiency and accuracy,and has certain application potential in urban management,road planning,intelligent driving and other fields.

anomalous trajectory detectionlocal anomalyspatial analysistrajectory points clustering

袁拓

展开 >

广州市城市规划勘测设计研究院有限公司,广东广州 510060

异常轨迹检测 局部异常 空间分析 轨迹点聚类

2024

智能城市
辽宁省科学技术情报研究所

智能城市

ISSN:2096-1936
年,卷(期):2024.10(10)