智能城市2024,Vol.10Issue(10) :27-29.DOI:10.19301/j.cnki.zncs.2024.10.009

基于BERT和LSTM的地震舆情情感倾向分析

Earthquake public opinion sentiment tendency analysis based on BERT and LSTM

吴月波 刘克辉 石晓辉
智能城市2024,Vol.10Issue(10) :27-29.DOI:10.19301/j.cnki.zncs.2024.10.009

基于BERT和LSTM的地震舆情情感倾向分析

Earthquake public opinion sentiment tendency analysis based on BERT and LSTM

吴月波 1刘克辉 1石晓辉1
扫码查看

作者信息

  • 1. 山东省地震局烟台地震监测中心站,山东烟台 264001
  • 折叠

摘要

通过Scrapy框架获取近三年(2021—2023年)国内5.0级以上地震震后48 h的相关微博博文和评论,对爬取的文本数据进行预处理并组成数据集,设计基于BERT和长短时记忆(LSTM)网络的深度学习地震舆情情感倾向模型.结果显示,该模型在地震舆情文本情感分析的准确率达到97.8%,具有高效的特征提取能力,能够为地震网络舆情监测提供参考.

Abstract

Through the Scrapy framework,the relevant Weibo blog posts and comments related to earthquake of magnitude 5.0 or above in China in the past three years (2021-2023) were obtained,and the crawled text data was preprocessed and compiled into a dataset,and a deep learning earthquake public opinion sentiment tendency model based on BERT and Long Short-Term Memory (LSTM) was designed. The results show that the accuracy of the model in the text sentiment analysis of earthquake public opinion reaches 97.8%,and it has efficient feature extraction ability,which can provide a reference for the monitoring of earthquake network public opinion.

关键词

Scrapy框架/地震舆情/BERT/LSTM/情感分析

Key words

Scrapy framework/earthquake public opinion/BERT/LSTM/sentiment analysis

引用本文复制引用

出版年

2024
智能城市
辽宁省科学技术情报研究所

智能城市

ISSN:2096-1936
段落导航相关论文