首页|基于BERT和LSTM的地震舆情情感倾向分析

基于BERT和LSTM的地震舆情情感倾向分析

扫码查看
通过Scrapy框架获取近三年(2021—2023年)国内5。0级以上地震震后48 h的相关微博博文和评论,对爬取的文本数据进行预处理并组成数据集,设计基于BERT和长短时记忆(LSTM)网络的深度学习地震舆情情感倾向模型。结果显示,该模型在地震舆情文本情感分析的准确率达到97。8%,具有高效的特征提取能力,能够为地震网络舆情监测提供参考。
Earthquake public opinion sentiment tendency analysis based on BERT and LSTM
Through the Scrapy framework,the relevant Weibo blog posts and comments related to earthquake of magnitude 5.0 or above in China in the past three years (2021-2023) were obtained,and the crawled text data was preprocessed and compiled into a dataset,and a deep learning earthquake public opinion sentiment tendency model based on BERT and Long Short-Term Memory (LSTM) was designed. The results show that the accuracy of the model in the text sentiment analysis of earthquake public opinion reaches 97.8%,and it has efficient feature extraction ability,which can provide a reference for the monitoring of earthquake network public opinion.

Scrapy frameworkearthquake public opinionBERTLSTMsentiment analysis

吴月波、刘克辉、石晓辉

展开 >

山东省地震局烟台地震监测中心站,山东烟台 264001

Scrapy框架 地震舆情 BERT LSTM 情感分析

2024

智能城市
辽宁省科学技术情报研究所

智能城市

ISSN:2096-1936
年,卷(期):2024.10(10)