首页|基于神经网络模型的水平井破裂压力预测方法

基于神经网络模型的水平井破裂压力预测方法

扫码查看
破裂压力是井身结构设计的基础依据,也是水力压裂设备选型和方案设计的基础参数,通常采用测井解释获取破裂压力剖面,但其存在参数准确获取难、计算过程繁琐、普适性较差、计算精度低等问题,机器学习提供了一种解决这些问题的新方法.为此,以测井数据作为输入参数,采用4种不同的神经网络模型,建立水平井测井数据与破裂压力间的非线性关系,通过测试集预测结果的对比分析,优选出最佳的神经网络模型,并优化模型网络结构和超参数,实现水平井破裂压力的直接预测.研究结果表明:1)破裂压力与井斜角、横波时差和纵波时差表现为极强相关性,与井深、岩性密度和补偿中子表现为强相关性,与井径和自然伽马表现为弱相关性;2)不同组合的测井参数对模型预测结果具有显著影响,最优输入参数为井斜角、横波时差、纵波时差、井深、岩性密度和补偿中子;3)对比多层感知机、深度神经网络、循环神经网络和长短期记忆神经网络(LSTM)模型,发现LSTM模型的预测效果最佳;4)优化了LSTM模型的网络结构及超参数,优化后破裂压力预测的平均绝对百分比误差为0.106%、决定系数为0.996.LSTM模型能够有效构建水平井测井参数与破裂压力之间的非线性关系,可以实现水平井破裂压力的准确预测,对于准确预测破裂压力、简化破裂压力计算过程、推广机器学习在石油工程领域的应用具有重要的作用.
Fracture pressure prediction method of horizontal well based on neural network model
Fracture pressure is the fundamental basis for the design of the well structure and the basic parameter for the selection of the hydraulic fracturing equipment and design scheme.Logging interpretation is usually used to obtain the fracture pressure profile,but it has the problems of being difficult to obtain the parameters accurately,tedious calculation process,poor applicability and low calculation accuracy.Machine learning offers a new way to solve these problems.Therefore,four different neural network models were used to establish the nonlinear relationship between horizontal well log data and fracture pressure using log data as input parameters,the best neural network model was preferred through the comparative analysis of test set prediction results,and the model network structure and hyperparameters were optimized to realize the direct prediction of horizontal well fracture pressure.The results show that:1)Fracture pressure shows a very strong correlation with well inclination angle and interval transit time of P-and S-waves,a strong correlation with well depth,lithology density and compensation neutron,and a weak correlation with well diameter and natural gamma.2)Different combinations of logging parameters have significant effects on the model prediction results,and the optimal input parameters are well inclination angle,interval transit time of P-and S-waves,well depth,lithology density,and compensation neutron.3)By comparing the multilayer perceptron,deep neural network,recurrent neural network,and long-and short-term memory(LSTM)neural network model,it is found that the LSTM model has the best prediction effect.4)The network structure and hyperparameters of the LSTM model are optimized,and the mean absolute percentage error of the fracture pressure prediction after optimization is 0.106%and its coefficient of determination is 0.996.The LSTM model can effectively construct a nonlinear relationship between horizontal well logging parameters and fracture pressure,and can achieve accurate prediction of horizontal well fracture pressure,which is important for accurately predicting fracture pressure,simplifying the fracture pressure calculation process,and promoting the application of machine learning in the field of petroleum engineering.

fracture pressurehorizontal wellneural networklong short-term neural networkwell logging data

马天寿、张东洋、陈颖杰、杨赟、韩雄

展开 >

西南石油大学 油气藏地质及开发工程全国重点实验室,四川 成都,610500

中国石油西南油气田分公司 致密油气勘探开发项目部,四川 成都,610056

中国石油川庆钻探工程有限公司 钻采工程技术研究院,四川 广汉,618300

破裂压力 水平井 神经网络 长短期记忆神经网络 测井数据

四川省科技计划项目四川省科技计划项目国家自然科学基金资助项目

2021YFH00472020JDJQ005541874216

2024

中南大学学报(自然科学版)
中南大学

中南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.938
ISSN:1672-7207
年,卷(期):2024.55(1)
  • 29