首页|基于数据驱动的盾构竖向姿态预测深度学习模型

基于数据驱动的盾构竖向姿态预测深度学习模型

扫码查看
在盾构掘进过程中,竖向姿态控制难度较大,盾体常与设计轴线产生偏差。为解决既有盾构姿态预测模型无法准确提取数据特征和有效去除数据噪声的问题,充分挖掘盾构掘进实测数据时间序列信息,依托合肥地铁7号线耕耘路站—清潭路站区间盾构隧道工程,对收集的掘进数据进行预处理,包括去除停机状态数据及异常数据,提出用于盾构竖向姿态预测的CNN-LSTM组合模型,并将测试集上的模型预测结果与传统回归模型进行对比,最后对不同样本数量及固定网络参数时的模型性能进行研究。研究结果表明:CNN-LSTM组合模型对盾构竖向姿态的预测效果较好,在测试集上的预测平均绝对误差EMA和均方根误差ERMS较低,同时预测的决定系数R2较高,表明模型具有较小的预测误差和较高的预测精度;与ARIMA、LSTM和SVR模型相比,CNN-LSTM模型在测试集上预测的R2分别提高了1。04%、19。75%和79。63%,此外,模型的预测EMA和ERMS较低,并且训练耗时显著降低;不同训练集样本数量对CNN-LSTM模型性能有一定影响,当训练集样本数量与测试集样本数量之比为4꞉1时,模型预测的R2最高,表明此时模型具有最佳的预测性能;增加训练集样本数量可能导致过拟合问题,降低模型的泛化能力,减少训练集样本数量则可能导致欠拟合问题,使模型在测试集上的预测精度下降;固定部分网络参数可以有效减少训练参数量和训练时间,同时提高模型的预测精度,当固定4层网络参数时,模型预测性能最佳,预测的R2为0。93,预测的EMA和ERMS分别为0。029和0。048,训练耗时为46 s。
Data-driven deep learning model of shield vertical attitude prediction
It is difficult to control the vertical attitude during shield tunneling,and the shield often deviates from the design axis.In order to solve the problem that the existing shield attitude prediction models cannot accurately extract data features and effectively remove data noise,the time series information of shield tunneling measured data was fully exploited,and according to the shield tunneling project in Gengyun Road Station—Qingtan Road Station section of Hefei Metro Line 7,the collected tunneling parameters including removing the shutdown status data and abnormal data were preprocessed,a CNN-LSTM combined model for predicting the shield vertical attitude was proposed.The prediction performance of the model on the test set was compared with that of the traditional regression model.Finally,the performance of the model with different sample sizes and fixed network parameters was studied.The results show that the CNN-LSTM combined model achieves good performance in predicting the shield vertical attitude,which exhibits low mean absolute error EMA and root mean square error ERMS and a high coefficient of determination R2 on the test set,indicating small prediction errors and high prediction accuracy.Compared to the ARIMA,LSTM,and SVR models,the CNN-LSTM model improves the predicted R2 values by 1.04% ,19.75% and 79.63% on the test set,respectively.Furthermore,the model shows low EMA and ERMS,and the training time is significantly reduced.The performance of the CNN-LSTM model is influenced by different sample sizes.When the ratio of the training set sample size to the test set sample size is 4꞉1,the model achieves the highest predicted R2,indicating optimal prediction performance.Increasing the training set sample size may lead to overfitting and decrease the generalization ability of the model,while reducing the training set sample size may result in underfitting and decrease the prediction accuracy on the test set.Fixing certain network parameters can effectively reduce the number of training parameters and training time as well as improve the prediction accuracy of the model.The model performs the best when fixing the parameters of a 4-layer network,with a predicted R2 of 0.93,and predicted EMA and ERMS of 0.029 and 0.048,respectively.The training time is 46 s.

shield tunnelingshield vertical attitudeshutdown statusCNN-LSTM combined model

王树英、汪来、潘秋景

展开 >

中南大学土木工程学院,湖南长沙,410075

中南大学隧地工程研究中心,湖南长沙,410075

中南大学重载铁路工程结构教育部重点实验室,湖南长沙,410075

盾构隧道 盾构竖向姿态 停机状态 CNN-LSTM组合模型

国家自然科学基金资助项目国家自然科学基金资助项目湖南省科技创新计划项目湖南省自然科学基金资助项目

52022112521083882021RC30152022JJ40611

2024

中南大学学报(自然科学版)
中南大学

中南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.938
ISSN:1672-7207
年,卷(期):2024.55(2)
  • 30