首页|基于深度学习的盾构隧道施工地表沉降预测方法

基于深度学习的盾构隧道施工地表沉降预测方法

扫码查看
针对现有盾构隧道施工引发地表沉降预测方法中存在的难以同时挖掘数据之间的非线性特征关系和双向时序信息的问题,通过融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)与自注意力机制(SA)提出一种基于深度学习的地表最大沉降预测方法(CNN-BiLSTM-SA).该方法首先利用CNN提取网络输入数据之间的非线性特征关系,利用BiLSTM网络提取输入数据的双向时序信息,然后引入SA机制为CNN提取的特征分配相应的权重,有效捕获时间序列中的关键信息,最后通过全连接层输出最终地表沉降预测结果.以湖南万家丽路电力盾构隧道工程为依托构建地表沉降数据集,并选用ANN、RNN、LSTM、BiLSTM模型开展对比分析.研究结果表明:评估指标CNN-BiLSTM-SA的平均绝对误差(MAE)、均方根(RMSE)、决定系数(R2)、平均绝对百分误差(MAPE)均为最优,具有更好的地表沉降预测性能.
A deep learning-based method for predicting surface settlement induced by shield tunnel construction
The nonlinear feature relationships and bidirectional time-series information of data can not be obtained at the same time in the existing methods for predicting surface settlement triggered by shield tunnel construction.A deep learning-based method(CNN-BiLSTM-SA)for maximum surface settlement prediction was proposed by fusing convolutional neural network(CNN).Bidirectional long and short-term memory(BiLSTM)and self-attention(SA).In CNN-BiLSTM-SA,CNN was first used to analyse the nonlinear feature relationships among the network input data,and BiLSTM network was used to extract the bi-directional time series information of the input data.And then SA was introduced to assign corresponding weights to the features extracted by CNN to effectively capture the key information in the time series.Finally,the final surface settlement prediction results were output through the fully connected layer.The surface settlement dataset was constructed based on the Hunan Wanjiali Road power shield tunnel project,and the four models,ANN,RNN,LSTM and BiLSTM,were selected to carry out comparative analysis experiments.The results show that the four evaluation indexes of mean absolute error(MAE),root mean square error(RMSE),determination coefficient(R2),and mean absolute percentage error(MAPE)of CNN-BiLSTM-SA are optimal,indicating that the proposed model has better surface settlement.

shield tunnelsurface settlementdeep learningneural network

尹泉、周怡、饶军应

展开 >

湖南城市学院城市地下基础设施结构安全与防灾湖南省工程研究中心,湖南益阳,413000

贵州大学空间结构研究中心,贵州贵阳,550025

盾构隧道 地表沉降 深度学习 神经网络

湖南省自然科学基金资助项目国家留学基金

2022JJ50281202308430166

2024

中南大学学报(自然科学版)
中南大学

中南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.938
ISSN:1672-7207
年,卷(期):2024.55(2)
  • 1
  • 25