首页|高速受电弓安装形式对列车气动性能的影响

高速受电弓安装形式对列车气动性能的影响

扫码查看
受电弓作为高速列车上不可或缺的部件,其结构特性直接影响高速列车整车气动性能.采用数值仿真方法,基于三维稳态SST k-ω模型,分析高速受电弓不同安装形式对高速列车气动性能的影响以及各节车辆气动阻力的变化规律,并进一步研究其横风环境适应性.研究结果表明:当高速列车在明线运行时,高速受电弓不同安装形式对整车气动性能影响较小,但受电弓所在车辆的气动阻力变化较大;与闭口-升前弓工况相比,受电弓开口-升前弓时整车气动阻力减小2.10%,其中第6节车气动阻力减小6.06%;在横风条件下,受电弓开口-升前弓时整车横风稳定性能较优,与开口-升后弓工况相比,整车横向力与倾覆力矩分别降低2.52%和3.48%,其中第6节车横向力和倾覆力矩分别减少11.13%与18.50%.因此,在明线有无横风条件下,受电弓安装形式为开口-升前弓的气动性能均最优,且升前弓能改善受电弓后区域的流场结构,从而达到改善整车气动性能的目的.
Influence of high-speed pantograph installation forms on train aerodynamic performance
As an integral component of high-speed trains,the structural characteristics of pantographs have a direct impact on the aerodynamic performance of high-speed trains.A numerical simulation method was adopted,based on the three-dimensional steady-state SST k-ω model,to analyze the effects of various installation forms of high-speed pantographs on the aerodynamic performance of high-speed train.Furthermore,the change in the aerodynamic drag of each vehicle section was analyzed and its adaptability in a cross-wind environment was explored.The results show that when the high-speed train is running in the open line,the different installation forms of high-speed pantographs have a small effect on the aerodynamic performance of the whole car,but the aerodynamic drag of the vehicle in which the pantograph is located varies considerably.Compared with the knuckle-upstream and front-lifted pantograph condition,the knuckle-downstream and front-lifted pantograph condition reduces the aerodynamic drag of the entire train by 2.10%.Notably,the aerodynamic drag of the sixth car is decreased by 6.06%.In cross-wind conditions,the cross-wind stability of the whole car is better when the pantograph is configured as knuckle-downstream and front-lifted.In contrast to the knuckle-downstream and front-lifted pantograph settings,the force and overturning moment of the whole car are reduced by 2.52%and 3.48%,respectively.Remarkably,the transverse force and overturning moment of the sixth car decrease by 11.31%and 18.50%,respectively.Therefore,the aerodynamic performance of the pantograph arrangement with or without crosswind on the open line is optimal for knuckle-downstream and front-lifted pantograph.Moreover,the elevated front pantograph contributes to refining the flow field arrangement in the zone behind the pantograph,ultimately accomplishing the objective of enhancing the aerodynamic performance of the entire vehicle.

high speed trainhigh speed pantographaerodynamic layoutcross wind applicability

高广军、项涛、丁艳思、向南燊、许澳、张洁

展开 >

重载快捷大功率电力机车全国重点实验室,湖南长沙,410075

中南大学交通运输工程学院,轨道交通安全教育部重点实验室,湖南长沙,410075

轨道交通列车安全保障技术国家地方联合工程研究中心,湖南长沙,410075

高速列车 高速受电弓 气动布局 横风适应性

国家重点研发计划国家铁路集团有限公司科技研发计划

2020YFA0710903K2021J004-B

2024

中南大学学报(自然科学版)
中南大学

中南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.938
ISSN:1672-7207
年,卷(期):2024.55(3)
  • 25