首页|基于先导压力与主泵压力的挖掘机刷坡工况效率预测

基于先导压力与主泵压力的挖掘机刷坡工况效率预测

扫码查看
针对挖掘机刷坡工况效率获取困难的问题,提出一种基于先导压力与主泵压力的挖掘机效率预测方法。该方法首先以挖掘机实际刷坡作业为研究对象,基于LabVIEW平台完成流量与压力、液压缸位移等原始数据的采集;对原始数据进行基于时间窗口的特征值提取、效率的获取等;然后,建立主成分分析-随机森林模型,包括采用主成分分析理论降低输入数据的维度,提高模型的运算速度与抗过拟合能力,采用随机森林算法建立挖掘机效率预测模型,实现挖掘机效率的精准预测;最后,将随机森林预测模型与支持向量机预测模型和BP神经网络预测模型进行对比,并探究样本数量与时间窗口对模型预测精度的影响、各主成分对挖掘机效率预测的重要程度等。研究结果表明:主成分分析可以有效地将输入数据的维度从18维降至6维,在选定的6个主成分中,挖掘机铲斗下降运动与挖掘机负载波动程度对挖掘机效率预测结果的影响较大;与支持向量机预测模型和BP神经网络预测模型相比,随机森林预测模型的精度更高;在样本数量为0~50 000个、时间窗口为0。05~0。25 s时,建立的基于主成分分析-随机森林算法的预测模型精度随样本数量与时间窗口宽度的增加有所提高,并在样本数量为40 000个、时间窗口宽度为0。1 s时取得最优性能,此时均方根误差为0。029 2。
Efficiency prediction of excavator slope brushing operation based on pilot pressure and the main pump pressure
Aiming at the difficulty of obtaining efficiency of excavator brush slope condition,an excavator efficiency prediction method based on pilot pressure and main pump pressure was proposed.Firstly,the method took the actual brushing slope operation of excavator as the research object,and completed the collection of original data such as flow and pressure and hydraulic cylinder displacement based on LabVIEW platform,and the original data was processed by eigenvalue extraction based on time window and efficiency acquisition.Then,a principal component analysis-random forest model was established,including using principal component analysis theory to reduce the dimension of input data,improving the operation speed and anti-overfitting ability of the model,and using random forest algorithm to establish an excavator efficiency prediction model to achieve accurate prediction of excavator efficiency.Finally,the random forest prediction model was compared with support vector machine prediction model and BP neural network prediction model,and the influence of sample size and time window on model prediction accuracy,as well as the importance of each principal component in predicting excavator efficiency were explored.The results indicate that principal component analysis can effectively reduce the dimensionality of input data from 18 dimensions to 6 dimensions.Among the selected 6 principal components,the descending motion of the excavator bucket and the degree of load fluctuation of the excavator have a significant impact on the efficiency prediction results of the excavator.Compared with support vector machine prediction model and BP neural network prediction model,the random forest prediction model has higher accuracy.When the sample size is 0-50 000 and the time window is 0.05-0.25 s,the accuracy of the prediction model based on principal component analysis random forest algorithm increases with the increase of sample size and time window width.The optimal performance is achieved when the sample size is 40 000 and the time window width is 0.1 s,with a root mean square error of 0.029 2.

efficiency predictionexcavatorrandom forestprincipal component analysis

夏毅敏、孙成杰、王维、陈艳军、夏士奇

展开 >

中南大学机电工程学院,湖南长沙,410083

中联重科股份有限公司,湖南长沙,410013

中联重科土方机械有限公司,湖南长沙,410209

效率预测 挖掘机 随机森林 主成分分析

湖南省科技重大专项十大技术攻关项目中南大学中央高校基本科研业务费专项资金资助项目

2021GK10702023ZZTS0652

2024

中南大学学报(自然科学版)
中南大学

中南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.938
ISSN:1672-7207
年,卷(期):2024.55(9)