首页|计算化学在黄铜矿浮选中应用的研究进展

计算化学在黄铜矿浮选中应用的研究进展

扫码查看
铜作为战略关键金属,在国民经济与新兴产业发展中占据核心地位,黄铜矿是其重要来源。浮选技术作为黄铜矿分选的关键技术,其药剂的创新对推动选矿行业绿色可持续发展至关重要。当前,从矿物晶体化学、固体物理及配位化学等微观视角深入探究药剂与黄铜矿的相互作用机制,成为浮选分离基础研究的核心内容。随着高性能计算与AI技术的飞速发展,计算化学为矿物浮选行为研究提供了强大工具。本文聚焦于黄铜矿浮选体系,概述了新型捕收剂与抑制剂的应用进展,并阐述了计算化学在浮选药剂设计、矿物晶体及表界面结构解析、药剂界面作用机制探索中的最新成果。在黄铜矿计算模拟中,模型构建与方法参数设定至关重要,需特别关注矿物的磁性与强关联性,常采用反铁磁性与Hubbard U修正进行设置,参数需针对具体体系进行优化。此外,计算时需矿物表面的非理想性与荷电特性要求进行电荷补偿。当前研究多集中于静态结构模拟,缺乏动态界面效应考量。未来,应发展高精度计算方法,如针对强关联体系的方法并通过系统测试优化模型与参数,以更精准地模拟带电缺陷体系。同时,结合机器学习技术,构建高精度大体系界面力场模型,实现黄铜矿复杂表界面体系的高精度分子动力学模拟,为铜矿资源的高效、清洁、精细化利用提供坚实的理论与方法支撑。
Research progress in application of computational chemistry in flotation of chalcopyrite
Copper,as a strategic key metal,occupies a central position in the development of national economies and emerging industries,and chalcopyrite is an important source. As a key means of separating chalcopyrite,flotation technology requires innovative reagents to promote the green and sustainable development of the industry. At present,exploring the interaction mechanism between reagents and chalcopyrite from microscopic perspectives such as mineral crystal chemistry,solid-state physics and coordination chemistry has become the core problen in basic research on flotation separation. With the leap in high performance computing and AI technology,computational chemistry has provided powerful tools for studying the flotation behavior of minerals. This article focuses on the flotation system of chalcopyrite,summarizes the application progress of new collectors and inhibitors,and elaborates on the recent achievements of computational chemistry in flotation reagent design,mineral crystal and surface interface structure analysis,and reagent interface mechanism exploration. In the simulation of chalcopyrite calculation,model construction and method parameter setting are crucial,and special attention should be paid to its magnetism and strong correlation. Antiferromagnetism and Hubbard U correction strategies are often used and parameters need to be optimized for specific systems. In addition,the non-ideality and charge characteristics of mineral surfaces require charge compensation during calculations. Current research mainly focuses on static structural simulation,lacking consideration of dynamic interface effects. In the future,high-precision calculation methods should be developed,such as methods for strongly correlated systems,and models and parameters should be optimized through system testing to simulate charged defect systems more accurately. At the same time,by combining machine learning technology,a high-precision large-scale system interface force field model should be constructed to achieve high-precision molecular dynamics simulation of the complex surface interface system of chalcopyrite,providing solid theoretical and methodological support for the efficient,clean,and refined utilization of copper resources.

computational chemistryflotationinterfaceschalcopyrite

姚钰昀、付博、张晨阳、王锦柯、赵刘闯、李少平、孙伟

展开 >

中南大学资源加工与生物工程学院,湖南长沙,410083

新疆工程学院矿业工程与地质学院,新疆乌鲁木齐,830023

新疆工程学院新疆煤炭资源绿色开采教育部重点实验室,新疆乌鲁木齐,830023

新疆维吾尔自治区地质勘查质量评价中心,新疆乌鲁木齐,830002

中南大学金属资源开发利用碳减排教育部工程研究中心,湖南长沙,410083

展开 >

计算化学 浮选 界面 黄铜矿

2024

中南大学学报(自然科学版)
中南大学

中南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.938
ISSN:1672-7207
年,卷(期):2024.55(11)