首页|改进鲸鱼算法优化多微波源功率组合的微波加热系统温度均匀性研究

改进鲸鱼算法优化多微波源功率组合的微波加热系统温度均匀性研究

扫码查看
多微波源组合加热系统内电磁场、温度场的均匀性不仅影响物料的加热质量,而且影响物料加热的能源效率。本文研究了多源微波加热系统中各微波源的功率分配问题,应用鲸鱼优化算法,探索提升多微波源加热物料的温度均匀性的调控方法。将加热系统中的多微波源的功率组合构建成一个鲸鱼种群的优化个体。设定微波总功率为约束条件并将物料温度均匀性作为目标函数,实现多微波源功率分配达到温度均匀分布的充分条件。对鲸鱼优化算法进行改进以提高搜索精度和收敛速度,提出实现微波源跟踪到对应分配功率的一个种群初始化迭代算法,从而实现温度均匀的目标。通过Matlab和COMSOL软件对模型进行联合仿真,结合算法的寻优迭代过程和模拟加热温度求解过程,验证了改进鲸鱼优化算法相较于各对比算法对温度均匀性有更好的效果。
Research on temperature uniformity of microwave heating system with multiple microwave source power combinations optimized by improved whale algorithm
The uniformity of electromagnetic field and temperature field in the combined heating system of multiple microwave sources not only affects the heating quality of materials,but also affects the energy efficiency of material heating. In this paper,the power allocation of each microwave source in the multi-source microwave heating system was investigated,and the whale optimization algorithm was applied to improve the temperature uniformity of materials heated by multi-microwave sources. The power combination of multiple microwave sources in the heating system was constructed as an individual of a whale population. The total microwave power was set as a constraint and the material temperature uniformity was taken as an objective function to realize the sufficient condition for the power allocation of multiple microwave sources to achieve a uniform temperature distribution,and then,the whale optimization algorithm was improved to enhance the search accuracy and convergence speed,and a population-based initial generation and iterative algorithm was applied to allocate suitable power to each microwave,thereby achieving uniform distribution of temperature. The model was co-simulated by Matlab and COMSOL software,combing the algorithm's iterative optimization process and the simulated heating temperature identification process. The results demonstrate that the improved whale optimization algorithm has a better temperature uniformity compared to other algorithms.

microwave heatingwhale optimization algorithmtemperature uniformitymulti-source microwave powerpopulation intelligence optimizationmulti-physics field joint simulation

杨彪、钱禹东、石裕怡、韩泽民、黄宏彬、吴照刚、彭飞云

展开 >

昆明理工大学信息工程与自动化学院,云南昆明,650500

昆明理工大学云南省高校工业智能与系统重点实验室,云南昆明,650500

昆明理工大学云南省人工智能重点实验室,云南昆明,650500

昆明理工大学非常规冶金教育部重点实验室,云南昆明,650093

展开 >

微波加热 鲸鱼优化算法 温度均匀性 多源微波功率 群体智能优化 多物理场联合仿真

2024

中南大学学报(自然科学版)
中南大学

中南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.938
ISSN:1672-7207
年,卷(期):2024.55(11)