首页|生成式AI的大模型提示工程:方法、现状与展望

生成式AI的大模型提示工程:方法、现状与展望

扫码查看
大语言模型和视觉语言模型在各领域的应用中展示出巨大潜力,成为研究热点.然而,幻觉、知识迁移、与人类意图对齐等问题仍然影响着大模型的性能.首先,探讨了提示工程与对齐技术基本原理,提出基于提示优化、专家反馈机制及实时调整机制的引导概念,提升了大语言模型在跨领域应用中的性能;其次,深入分析提示工程的核心技术,如多步推理处理复杂任务的原理;然后,针对各领域的实际应用,讨论提示工程的发展现状;最后,总结提示工程面临的挑战并展望其未来发展方向.提示工程在理论与应用方面的发展,为提升大模型在实际应用中的性能提供了全面的解决方案.
From prompt engineering to generative artificial intelligence for large models:the state of the art and perspective
Large language models and vision-language models have demonstrated significant potential in various down-stream applications,making it become a research hotspot.However,the issues such as hallucinations and knowledge transfer impact the performance of these models.Firstly,this paper explores the fundamental principles of prompt engi-neering and alignment techniques,and proposes the concept of"prescriptive",which is based on optimizing prompts and expert feedback verification and can be adjusted in real-time.This aims to further enhance the performance of large lan-guage models in cross-domain applications.Secondly,the core technologies of prompt engineering,such as the principles of multi-step reasoning for handling complex tasks,are analyzed in depth.Additionally,the development status of prompt engineering is discussed based on practical applications in various fields.Finally,this paper summarizes the challenges faced by prompt engineering and looks into its future development directions.The development of prompt engineering in theory and application,provide comprehensive solutions for improving the performance of large models in practical appli-cations.

prompt engineeringalignment technologygenerative artificial intelligencelarge language modelsvision-language models

黄峻、林飞、杨静、王兴霞、倪清桦、王雨桐、田永林、李娟娟、王飞跃

展开 >

澳门科技大学创新工程学院工程科学系,澳门 999078

青岛智能产业技术研究院,山东 青岛 266109

中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京 100190

中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190

中国科学院大学人工智能学院,北京 100049

展开 >

提示工程 对齐技术 生成式AI 大语言模型 视觉语言模型

澳门特别行政区科学技术发展基金项目北京市自然科学基金-怀柔创新联合基金项目

0145/2023/RIA3L245025

2024

智能科学与技术学报

智能科学与技术学报

CSTPCD
ISSN:
年,卷(期):2024.6(2)