首页|深度强化学习应用于金融市场量化交易研究综述

深度强化学习应用于金融市场量化交易研究综述

扫码查看
深度强化学习(deep reinforcement learning,DRL)作为一种实现通用人工智能的有效学习范式,已在一系列实际金融市场量化交易应用中取得了显著成果,成为该领域的主流方法。首先,对深度强化学习的基本概念和原理进行了详细介绍,在此基础上,系统地综述了DRL在金融市场量化交易中的应用和实践进展,涵盖了基于策略的算法模型、基于价值的算法模型,以及基于演员—评论家的算法模型等不同类型的DRL在金融市场量化交易中的应用。进一步探讨了DRL在金融市场量化交易中的优势,指出其能够根据市场环境的动态变化调整交易策略,以适应不同的市场环境。其次,指出了DRL在金融市场量化交易中面临的挑战,包括数据质量问题、模型稳定性问题、过拟合问题等。最后,对DRL在金融市场量化交易领域未来的发展趋势进行了展望。随着算法的不断优化和计算能力的提升,DRL将在金融市场量化交易领域发挥更加重要的作用,为投资决策提供更加准确和可靠的支持。
Review:the application of deep reinforcement learning to quantitative trading in financial market
As an effective learning paradigm to realize general artificial intelligence,deep reinforcement learning(DRL)has achieved significant results in a series of practical quantitative trading applications in financial market,becoming the mainstream method in this field.Firstly,a detailed introduction to the basic concepts and principles of deep reinforcement learning were provided.On this basis,a systematic review was conducted on the application and practical progress of DRL in quantitative trading in financial market,covering the application of different types of DRL,such as policy-based algorithm models,value-based algorithm models,and actor-critic algorithm models in quantitative trading in financial market.The advantages of DRL in quantitative trading in financial market were further explored,pointing out DRL could adjust trading strategies based on dynamic changes in the market environments to adapt to different market environments.Secondly,the challenges faced by DRL in quantitative trading in financial market were pointed out,including data quality issues,model stability issues,overfitting issues,etc.Finally,we outlooked the future development trend of DRL in the field of quantitative trading in financial market.It is believed that with the continuous optimization of algorithms and the improvement of computing power,DRL will play a more important role in the field of quantitative trading in financial mar-ket,providing more accurate and reliable support for investment decisions.

financial marketquantitative tradingdeep reinforcement learning

许波、贺一峻、温健城、李祥霞

展开 >

广东财经大学信息学院,广东 广州 510320

广东省智能商务工程技术研究中心,广东 广州 510320

金融市场 量化交易 深度强化学习

2024

智能科学与技术学报

智能科学与技术学报

CSTPCD
ISSN:
年,卷(期):2024.6(4)