首页|基于近红外的木屑含水率定量检测

基于近红外的木屑含水率定量检测

扫码查看
[目的]基于近红外光谱分析技术(NIRS)构建杨木、松木木屑的含水率预测模型,并将 2 种木屑样本光谱数据集混合建立含水率预测模型,实现同时预测多树种木屑含水率。为提高NIRS模型预测木屑含水率精度与普适性提供理论依据。[方法]本研究采用偏最小二乘回归(PLSR)、支持向量机回归(SVR)建立制浆材木屑含水率NIRS预测模型。采用粒子群算法(PSO)、灰狼算法(GWO)优化模型超参数。以制浆原料中的木屑为研究对象,采集了由杨木和松木为主的 120 份木屑样本的近红外光谱。分别采用杠杆值与学生化残差t检验法(HLSR)和标准正态变量变换(SNV)等方法对原始光谱数据进行异常样本剔除和预处理,采用无信息变量消除法(UVE)等提取特征波段,对比经GWO、PSO优化的SVR模型和PLSR模型的性能。[结果]对杨木木屑含水率最优NIRS模型,最佳预处理方法为SNV+Auto+SGS,结合CARS构建PSO-SVR模型(R 2P=0。916 4,RMSEP=0。114 8%)。对松木木屑含水率最优NIRS模型,最佳预处理方法为SNV+Auto+SGS,结合UVE构建PSO-SVR模型(R 2P=0。934 3,RMSEP=0。063 7%)。对混合木屑含水率最优NIRS模型,最佳预处理方法为MSC+Auto+SGS,结合UVE构建PSO-SVR模型(R 2P=0。922 1,RMSEP=0。111 1%)。[结论]NIRS可以用于预测单一树种木屑含水率,建立同时预测多树种木屑含水率预测模型是可行的。通过不同预处理和优化算法进行比较筛选组合进行模型优化可以显著提高木屑含水率近红外估测模型的精度。为实时检测制浆材木屑含水率提供了理论依据和技术支持。
Modeling moisture content of sawdust based on NIRS
[Objective]Based on near infrared spectroscopy(NIRS),the moisture prediction models of single poplar and pine sawdust were constructed,and the spectral data sets of the two sawdust samples were mixed to establish the moisture prediction model,so as to predict the moisture of multi-tree sawdust simultaneously.[Method]In this study,partial least squares regression(PLSR)and support vector regression(SVR)were used to establish a pulpwood sawdust moisture prediction model based on NIRS.Particle swarm optimization(PSO)and grey wolf optimizer(GWO)were used to optimize the hyperparameters of the model.Using the sawdust of pulping material as the object of study,the near-infrared spectra of 120 mixed sawdust samples,mainly poplar and pine,were collected.The original spectral data were screened out and preprocessed using the high leverage studentized residual(HLSR)and standard normal variate(SNV)methods,respectively.The uninformative variables elimination(UVE)was used to extract the informative bands.The performance of GWO-SVR,PSO-SVR and PLSR models were compared.[Result]For establishing the NIR prediction model of poplar sawdust moisture,SNV+Auto+SGS,CARS and PSO-SVR were the best optimal preprocessing method,selecting characteristic wavelengths method and modeling methods,respectively(R 2P=0.916 4,RMSEP=0.114 8%).For establishing the NIR prediction model of pine sawdust moisture,SNV+Auto+SGS combined with UVE,and PSO-SVR were the best pre-processing and modeling methods,respectively(R 2P=0.934 3,RMSEP=0.063 7%).For establishing the NIR prediction model of mixed sample sets of poplar and pine sawdust moisture,MSC+Auto+SGS combined with UVE,and PSO-SVR were the best pre-processing and modeling methods,respectively(R 2P= 0.922 1,RMSEP =0.111 1%).[Conclusion]NIRS can be used to predict the sawdust moisture content of one single tree species,and it is feasible to construct a prediction model for the sawdust moisture content of multi-tree species in the meanwhile.Model optimization by comparing and screening combinations of different preprocessing and optimization algorithms can significantly improve the accuracy of sawdust moisture NIR estimation models.It provides a theoretical basis and technical support for detecting the moisture of sawdust in real time.

sawdustmoisture contentnear-infrared spectroscopygrey wolf optimizationparticle swarm optimization

彭润东、李耀翔、张哲宇、陈雅、刘晓利

展开 >

东北林业大学 机电工程学院,黑龙江 哈尔滨 150040

木屑 含水率 近红外光谱 灰狼算法 粒子群算法

黑龙江省重点研发计划子课题黑龙江省重点研发计划子课题

GA21C030GA19C006

2024

中南林业科技大学学报
中南林业科技大学

中南林业科技大学学报

CSTPCD北大核心
影响因子:1.442
ISSN:1673-923X
年,卷(期):2024.44(2)
  • 28