首页|基于无人机多光谱遥感的林火监测模型

基于无人机多光谱遥感的林火监测模型

扫码查看
[目的]森林火灾监测多采用卫星和低空热红外遥感对林火进行识别,准确率高,但受限于硬件性能和成本,对基于无人机的多光谱遥感及不同图像传感器比较的林火监测研究较少。[方法]选定山地树林作为试验对象,根据起火点的明火和阴燃两种状态,结合树冠状态,分为明火有遮挡、明火无遮挡、阴燃有遮挡、阴燃无遮挡等 4 种林火状态,以无火场景作为对照,开展森林火灾监测试验,利用无人机分别搭载热红外、多光谱、可见光等图像传感器采集林火图像,分别基于随机森林(RF)、支持向量机(SVM)、反向传播神经网络(BP)3种机器学习算法建立林火监测模型,通过准确率(Accuracy)、精度(Precision)、召回率(Recall)和F1-score进行监测模型性能评估。[结果]综合分析,热红外相机和可见光相机基于支持向量机(SVM)的监测模型准确率最高,多光谱相机基于随机森林(RF)的监测模型准确率最高。热红外相机监测准确率高达100%,多光谱相机接近100%,可见光相机达到85%。综合分析,热红外相机监测准确率最高,多光谱相机次之,可见光相机监测性能最差。多光谱相机可在不同林火状态下较好地替代热红外相机进行监测,可见光相机在不同林火状态下均表现出较差的监测效果。[结论]通过使用机器学习算法进行优化,多光谱相机可在林火监测中有效替代热红外相机,可以显著降低监测成本和丰富林火监测技术手段。
Model research for monitoring forest fires based on UAV multispectral remote sensing
[Objective]Forest fire monitoring often uses thermal infrared cameras to identify forest fires,which have high monitoring accuracy but depend on hardware performance and have limited applications.Less research is conducted on the application of multi-spectral remote sensing images collected by unmanned aerial vehicles(UAVs)at low altitudes in forest fire monitoring.[Method]A forest with lush canopy was selected as the experimental area,and according to the flaming and smoldering status of the fire point,combined with the shading type of the tree crown,it was divided into four working condition experimental groups,flaming and sheltered fire,flaming and shelterless fire,smoldering and sheltered fire,and smoldering and shelterless fire,and the no-fire scenario was used as the control group to carry out the forest fire simulation experiments.The corresponding image data were collected by UAV equipped with thermal infrared,multispectral and visible image sensors,and three machine learning algorithms,Random forest(RF),Support vector machine(SVM),and Back propagation neural network(BP),were used to establish a binary classification model for forest fire monitoring,and accuracy,precision,recall and F1-score for model performance evaluation.[Result]Combining the four working conditions,the thermal infrared camera and visible light camera applied the support vector machine(SVM)model with the highest accuracy,and the multispectral camera applied the random forest(RF)model with the highest accuracy.The thermal infrared camera monitored the highest overall accuracy of 100%,the multispectral camera was close to 100%,and the visible camera reached 85%under all conditions.The thermal infrared camera had the highest accuracy,followed by the multispectral camera,and the visible light camera had the worst performance among the three cameras.The multispectral camera could be a better substitute for the thermal infrared camera in three working conditions,and the visible light camera failed to show a better substitution effect in all four working conditions.[Conclusion]By secondary processing of images using machine learning,multispectral cameras can replace thermal infrared cameras in forest fire monitoring applications,and visible light cameras can partially replace thermal infrared cameras in open fire situations.Using multispectral or visible light cameras to replace thermal infrared cameras for forest fire monitoring can significantly reduce monitoring costs.

forest fire detectionmultispectralUAVmachine learning

贾志成、段棋峰、汪东

展开 >

南京林业大学 机械电子工程学院,江苏 南京 210037

南京警察学院,江苏 南京 210042

林火监测 多光谱 无人机 机器学习

江苏省"六大人才高峰"高层次人才项目国家自然科学基金

GDZB-03632371891

2024

中南林业科技大学学报
中南林业科技大学

中南林业科技大学学报

CSTPCD北大核心
影响因子:1.442
ISSN:1673-923X
年,卷(期):2024.44(3)
  • 28