首页|基于ALS和TLS融合数据的枝条属性因子构建木材材积模型

基于ALS和TLS融合数据的枝条属性因子构建木材材积模型

扫码查看
[目的]立木材积作为森林蓄积量估算的重要单元,具有重要的森林资源调查意义,研究基于多源激光雷达手段获取立木枝条属性因子的方法,探究树木点云构建更优立木材积预测模型的能力。[方法]本文基于地基激光雷达(TLS)与机载激光雷达(ALS)融合的点云数据,运用几何特征树木骨架和提取不完全模拟水分和养分传输算法(ISTTWN),建立三维树木模型,并获取杨树单木的枝条属性因子。通过构建以枝条属性因子为自变量的立木材积预测模型,探索构建林分蓄积量最优估测模型。[结果]融合后的枝条属性因子较融合前精度有所提高,提取精度依次为着枝高度>枝长>弦长>着枝角度>分枝角度>弓高,其中枝长拟合度最高,R2 达 0。989。在利用特征参数与枝条属性因子构建材积预测模型中,基于枝条属性因子构建的模型较由特征参数建立的线性与非线性材积模型R2 分别提高 0。088 与 0。110,RMSE则分别降低 0。012 与 0。009 m3。而将二者结合共同构建立木材积模型后,其线性与非线性模型拟合度分别达0。729 与 0。759,为六组材积预测模型中最佳。[结论]TLS与ALS融合点云数据后,由于数据之间的相互弥补,有效提高点云密度,在三维树木模型研建中能够显著的提高枝条属性因子的提取精度,同时在材积预测模型中加入枝条属性因子这一自变量能够有效提高模型预测的准确性。
Construction of a wood volume model based on branch attribute factors of ALS and TLS fusion data
[Objective]As an important unit of forest stock estimation,standing wood volume has important significance in forest resource investigation.This paper studied the method of obtaining the attribute factors of standing wood branches based on multi-source Lidar,and explored the ability of tree point cloud to build a better predicting model of standing wood volume.[Method]In this paper,based on the fusion point cloud data of ground-based Lidar(TLS)and airborne Lidar(ALS),a three-dimensional single tree model was established by using the geometric characteristics of tree skeleton and the extraction algorithm of incomplete simulation of water and nutrient transport(ISTTWN),and the branch attribute factors of individual poplar trees were obtained.By constructing a prediction model of stand volume with branch attribute factor as independent variable,the optimal estimation model of stand stock was explored.[Result]The accuracy of branch attribute factors after fusion was much improved compared with that before fusion,and the extraction accuracy was in the order of branch height>branch length>chord length>branch growth angle>branch angle>bow height.Among them,the fit degree of branch length was the highest with R2 of 0.989.Compared with the linear and nonlinear product volume models established by the feature parameters,the model constructed based on the feature parameters increased by 0.088 and 0.110 respectively,while the RMSE decreased by 0.012 and 0.009 m3 respectively.The linear and nonlinear models fit 0.688 and 0.709 respectively,which was the best among the six groups of volume prediction models.[Conclusion]After the fusion of point cloud data between TLS and ALS,the high point cloud density can be effectively improved due to the mutual compensation between the data,and the extraction accuracy of branch attribute factors can be significantly improved in the research and development of 3D tree models.At the same time,adding the independent variable of branch attribute factor into the volume prediction model can effectively improve the accuracy of the model prediction.

airborne LiDAR scannerterrestrial LiDAR scannerfusion point cloud databranch attribute factorvolume prediction model

虞晨音、温小荣、汪求来、叶金盛

展开 >

南京林业大学 南方现代林业协同创新中心,江苏 南京 210037

南京林业大学 林草学院,江苏 南京 210037

广东省林业调查规划院,广东 广州 510520

机载激光雷达 地基激光雷达 融合点云数据 枝条属性因子 材积预测模型

国家重点研发计划广东省林业科技创新项目江苏高校优势学科建设工程项目(PAPD)

2016YFC05027042021KJCX001

2024

中南林业科技大学学报
中南林业科技大学

中南林业科技大学学报

CSTPCD北大核心
影响因子:1.442
ISSN:1673-923X
年,卷(期):2024.44(3)
  • 26