首页|基于LSTM长短期记忆网络的樟子松木材气干密度NIRS模型预测

基于LSTM长短期记忆网络的樟子松木材气干密度NIRS模型预测

扫码查看
[目的]木材密度不仅与木材的各种材性密切相关,而且是衡量木材质量与价值的重要指标。采用近红外光谱(Near infrared spectroscopy,NIRS)分析技术能够快速、高效地预测木材密度,避免了传统试验中繁琐的检测步骤。长短期记忆网络(Long short-term memory network,LSTM)作为循环神经网络(Recurrent neural network,RNN)的变体,不仅可以学习序列数据之间的高阶特征信息,而且克服了RNN中的长距离依赖、梯度爆炸与梯度消失等问题。将LSTM与NIRS结合,提出一种能够准确预测樟子松木材气干密度的无损检测技术,为提高NIRS模型预测木材气干密度精度提供理论依据。[方法]该研究以樟子松木材样本为研究对象,用近红外光谱仪获得 106 个樟子松样本的光谱数据,并在恒温(20±2℃)恒湿(65%±3%)的环境下测定样本的气干密度。通过对比多组预处理方法和特征选择方法,采用Savitzky-Golay卷积平滑(Savitzky-Golay smoothing,SGS)等方法进行预处理,采用竞争性自适应加权算法(Competitive adaptive reweighted sampling,CARS)进行波段选择,剔除NIRS数据中的高频噪声与冗余信息,提升光谱数据质量、建模速度与精度。为验证LSTM模型预测能力,将其与偏最小二乘回归(Partial least squares regression,PSLR)、卷积神经网络(Convolution neural network,CNN)等建模算法对比分析。上述 3 种算法被分别应用于建立樟子松木材气干密度近红外预测模型。[结果]基于上述 3 种建模方法建立的NIRS模型均可实现樟子松气干密度的有效预测。且LSTM模型的预测精度与回归拟合度均优于PLSR与CNN模型。其中SGS+CARS处理后的LSTM模型的预测精度最高、泛化性能最强、拟合效果最好(R2=0。959,RMSEP=0。005,RPD=5。033)。[结论]通过对樟子松木材光谱数据与气干密度的采集,建立了一种新型的基于NIRS分析技术与LSTM的木材气干密度检测方法。LSTM预测模型相较于传统的回归模型,模型的预测精度更高,回归效果更好,鲁棒性更强。该检测方法既可保证木材的完整性,又可以提高气干密度的预测精度,实现了对樟子松木材气干密度的快速无损检测,为木材近红外光谱分析提供了可参考的模型与理论依据。
NIRS model prediction of air-dry density of Pinus sylvestris wood based on long short-term memory network(LSTM)
[Objective]Wood density is not only related to various wood properties,but also an important indicator to evaluate the quality and value of wood.The NIRS analysis technique can predict wood density quickly and efficiently,avoiding the tedious detection steps in conventional experiments.As a variant of recurrent neural network(RNN),long short-term memory network(LSTM)can not only learn the high-order characteristic information between sequential data,but also handle the problems of long-distance dependencies,gradient explosion and gradient extinction in RNN.By combining LSTM and NIRS,a non-destructive detecting technique that can accurately predict the air-dry density of Pinus sylvestris wood was proposed to provide a theoretical basis for improving the accuracy of the NIRS model in predicting the air-dry density of wood.[Method]In this study,the spectral data of 106 samples of P.sylvestris were obtained by NIRS spectrometer,and the air-dry density of these samples was obtained with NIRS spectrometer under constant temperature(20±2℃)and relative humidity(65%±3%)environment.By comparing multiple groups of pretreatment methods and feature selection methods,Savitzky-Golay smoothing(SGS)and other methods were used for pretreatment,competitive adaptive weighting algorithm(CARS)was used for band selection,eliminating high-frequency noise and redundant information in NIRS data,and improving spectral quality,modeling speed and accuracy.In order to verify the predictive ability of LSTM model,it was compared and analysed with the modelling algorithms such as partial least square regression(PSLR),convolutional neural network(CNN).Each of these above-mentioned three modelling methods were applied to establish a near-infrared prediction model for the air-dry density of P.sylvestris wood.[Result]The NIRS models established based on the above-mentioned modelling methods achieved effective prediction of the air-dry density of P.sylvestris wood.And the prediction accuracy and regression fit of LSTM model were better than PLSR and CNN model.The LSTM model treated by SGS+CARS had the highest prediction accuracy,the strongest generalization performance and the best fitting effect(R2=0.959,RMSEP=0.005,RPD=5.033).[Conclusion]Through the collection of spectral data and air-dry density of pine sylvestris wood,a novel method for detecting air-dry density of wood based on NIRS and LSTM was established.Comparing to the traditional regression model,LSTM model has higher prediction accuracy,better regression effect and stronger robustness.The detection method can not only ensure the integrity of the wood,but also improve the prediction accuracy of the air-dry density,which achieves the rapid non-destructive detection of the air-dry density of the Pinus sylvestris wood,and provides a referable model and theoretical basis for the NIRS analysis of wood.

long short-term memory networknear infrared spectroscopyPinus sylvestrisair-dry density

彭润东、李耀翔、陈雅、张哲宇、刘晓利

展开 >

东北林业大学 机电工程学院,黑龙江 哈尔滨 150040

长短期记忆网络 近红外光谱 樟子松 气干密度

黑龙江省重点研发计划子课题黑龙江省重点研发计划子课题

GA21C030GA19C006

2024

中南林业科技大学学报
中南林业科技大学

中南林业科技大学学报

CSTPCD北大核心
影响因子:1.442
ISSN:1673-923X
年,卷(期):2024.44(3)
  • 33