首页|基于图像特征的森林地表凋落物载量分析

基于图像特征的森林地表凋落物载量分析

扫码查看
[目的]森林地表凋落物载量值影响林火的发生和森林火灾所表现的一系列火行为特征等,准确获取地表凋落物载量值十分重要。图像特征欧拉数能够表征图像中对象的多少,分析欧拉数与载量之间的关系,并建立基于图像欧拉数的载量预测模型对于载量研究具有重要意义。[方法]以贵州省典型林分柳杉林和毛竹林内凋落物为研究对象,通过野外林分和载量调查、拍摄凋落物图片和图片特征处理,分析图像特征欧拉数与地表凋落物载量之间的关系,建立基于图像欧拉数的载量预测模型,并检验模型精度。[结果]1)选择不同阈值对图像二值化处理后,提取得到的欧拉数并不是都与载量存在相关性,阈值为0。1 对图像二值化后的图像欧拉数与两种凋落物载量呈极显著相关;2)随着图像欧拉数的增加,柳杉和毛竹林地表凋落物载量整体呈下降趋势;3)选择线性回归建立基于图像特征欧拉数的凋落物载量预测模型,柳杉和毛竹林凋落物载量的预测模型绝对误差分别为 1。60 和1。72 t·hm-2,相对误差分别为20。03%和20。71%,柳杉林地表凋落物载量的预测效果要优于毛竹林。[结论]本研究验证了基于图像特征预测森林地表凋落物载量的可行性,为准确获取载量研究提供新思路,对于火险预报和科学林火管理具有重要意义。
Analysis of forest surface litter loading estimation based on image features
[Objective]The loading of forest surface litter affects the occurrence of forest fires and a series of fire behavior characteristics exhibited by forest fires.Accurately obtaining the loading of surface litter is crucial.The Euler number of image feature can characterize the number of objects in the image,analyze the relationship between Euler number and loading,and establish a load prediction model based on image Euler number,which is of great significance for load research.[Method]The litter in typical forest stands of Cryptomeria fortunei and Phyllostachys heterocycla in Guizhou province was taken as the research object.Through forest stand and loading investigation,taking litter images and image feature processing,the relationship between Euler number and surface litter loading was analyzed.A load prediction model based on image Euler number was established,and the accuracy of the model was tested.[Result]1)After selecting different thresholds for image binarization,not all extracted Euler numbers were correlated with the litter loading.A threshold of 0.1 showed a highly significant correlation between the Euler numbers of binarized images and the two types of litter loading;2)As the Euler number of the image increased,the surface litter loading of forests of C.fortunei and P.heterocycla showed an overall downward trend;3)Linear regression was chosen to establish a litter loading prediction model based on image feature Euler number.The absolute errors of the prediction models for the litter load in C.fortunei and P.heterocycla forests were 1.60 t·hm-2 and 1.72 t·hm-2,respectively,with mean relative errors of 20.03%and 20.71%.The predicted effect of surface litter loading in C.fortunei forest was better than that in P.heterocycla forest.[Conclusion]Through this study,the feasibility of predicting forest surface litter loading based on image features has been preliminarily verified,providing new ideas for accurately obtaining load research and of great significance for scientific forest fire management.

litterloadingimageEuler numberprediction model

张运林、田玲玲、杨光、宁吉彬

展开 >

贵州师范学院生物科学学院,贵州 贵阳 550018

贵州师范学院贵州省高等学校林火生态与管理重点实验室,贵州 贵阳 550018

东北林业大学 林学院,黑龙江 哈尔滨 150040

凋落物 载量 图像 欧拉数 预测模型

"十四五"国家重点研发计划国家自然科学基金项目贵州省高等学校智慧林火创新团队贵州师范学院与东北林业大学联合培养硕士研究生专项科研基金项目

2023YFC300690032201563黔教技[2023]75号2024YJS01

2024

中南林业科技大学学报
中南林业科技大学

中南林业科技大学学报

CSTPCD北大核心
影响因子:1.442
ISSN:1673-923X
年,卷(期):2024.44(8)