首页|湖南省沅陵县乔木林地上生物量遥感估测方法研究

湖南省沅陵县乔木林地上生物量遥感估测方法研究

扫码查看
为了构建合适的乔木林地上生物量估测模型,以湖南省怀化市沅陵县为研究区域,选取Landsat8 OLI卫星遥感影像数据,结合地面样地数据、DEM数据和土地利用数据,在提取遥感特征和皮尔逊相关性分析的基础上,分别构建了多元线性逐步回归模型、BP神经网络模型和随机森林模型,对沅陵县乔木林地上生物量进行估测,并评价了不同估测模型之间的精度差异.结果表明,基于随机森林模型(R2 =0.569)的估测精度远优于BP神经网络模型(R2 =0.255)和多元线性逐步回归模型(R2 =0.149).
Research on the Method of Estimating Aboveground Biomass(AGB)in Arbor Forests by Remote Sensing in Yuanling County,Hunan Province
In order to construct a suitable model of estimating aboveground Biomass in arbor forests,Yuanling County,Huaihua City,Hunan Province,was selected as the research area,and Landsat8 OLI satellite remote sensing image data were selected,combined with ground sample data,DEMdata and land use data.Multiple linear regression models,BP neural network models,and random forest algorithm models were respectively con-structed to estimate the aboveground biomass of Yuanling County,and the accuracy differences among different estimation models were compared.The results showed that the accuracy of the forest biomass estimation model based on the random forest algorithm(R2 =0.569)was much better than that of the BP neural network model(R2 =0.255)and the multiple linear regression model(R2 =0.149)in Yuanling County.At the same time,the forest biomass in Yuanling County that was estimated by using the random forest algorithm model showed the best accuracy after accuracy verification.

aboveground organisms in arbor forestBP neural networkrandom forestLandsat8 OLIYuanling County

熊珂、李胜飞、邢元军

展开 >

湖南省林业资源调查监测评价中心,湖南 长沙 410004

国家林业和草原局中南调查规划院,湖南 长沙 410014

乔木林地上生物量 BP神经网络 随机森林 Landsat8 OLI 沅陵县

2024

中南林业调查规划
国家林业局中南林业调查规划设计院

中南林业调查规划

影响因子:0.366
ISSN:1003-6075
年,卷(期):2024.43(1)
  • 1
  • 21