首页|利用自相似性实现医学图像合成的生成对抗网络

利用自相似性实现医学图像合成的生成对抗网络

A generative adversarial networks for medical image synthesis based on self-similarity

扫码查看
基于深度卷积的跨模态医学图像合成网络具有从大规模数据资源中学习非线性映射关系以进行局部生成的优势,但现有方法忽略了医学图像具有特征自相似性的特点,仅通过卷积来提取像素级别的特征信息,导致深层特征提取能力不足和语义信息表达不充分.为此,提出了基于图注意力块(Graph Attention Block,GAB)和全局块注意力块(Global Patch Attention Block,GPAB)的生成对抗网络(Graph Attention Block and Global Patch Attention Block Generative Adversarial Networks,GGPA-GAN).其中,用图注意力块和全局块注意力块捕捉医学图像切片间以及切片内的自相似性,进行深层特征的提取.此外,在生成器中加入二维位置编码,利用图像的空间位置信息来增强语义信息的表达能力.在HCP_S1200数据集和ADNI数据集上的实验结果表明,提出的网络在3T-7T、T1-T2的脑部MRI图像合成任务中相较于其他网络取得了最优的结果.在3T-7T脑部MRI图像合成任务中,相比Pix2pix合成方法,该方法在峰值信噪比(Peak Signal-to-Noise Ratio)、结构相似性指数(Structural Similarity Index)和平均绝对误差(Mean Absolute Error)方面分别提升了0.55、0.007和6.55.在T1-T2脑部MRI图像合成任务中,相比Pix2pix合成方法,在PSNR、SSIM和MAE分别提升了0.68、0.006和8.77.这些结果充分证明了此方法的有效性,为临床诊断提供了有力的帮助.
The cross-modal medical image synthesis network based on deep convolution has the advantage of learning nonlinear mapping relationships from large-scale data resources to perform local generation.However,the existing methods overlook the inherent feature self-similarity of medical images and only extract pixel-level feature information through convolution,which results in insufficient deep feature extraction capability and inadequate semantic information representation.Therefore,a Generative Adversarial Network(Graph Attention Block and Global Patch Attention Block Generative Adversarial Networks,GGPA-GAN)is proposed based on Graph Attention Block(GAB)and Global Patch Attention Block(GPAB).GAB and GPAB are utilized to capture the self-similarity between and within slices of medical images,which enable deep feature extraction.Additionally,2D positional encoding in the generator is incorporated by using spatial position information of the images to enhance the expression capability of semantic information.The experimental results on the HCP_S1200 dataset and ADNI dataset demonstrate that the proposed network achieves superior performance compared to other networks in synthesizing brain MRI images across 3T-7T and T1-T2 modalities.In the 3T-7T brain MRI image synthesis task,the method outperforms the Pix2pix synthesis method with improvements of 0.55 in Peak Signal-to-Noise Ratio(PSNR),0.007 in Structural Similarity Index(SSIM),and 6.55 in Mean Absolute Error(MAE).For the T1-T2 brain MRI image synthesis task,the method surpasses the Pix2pix method with improvements of 0.68 in PSNR,0.006 in SSIM,and 8.77 in MAE.These results fully prove the effectiveness of the proposed method and provide powerful help for clinical diagnosis.

brain magnetic resonance imagingdeep learningmedical image synthesisgraph attentionpositional encoding

李帅先、谭桂梅、刘汝璇、唐奇伶

展开 >

中南民族大学 生物医学工程学院,武汉 430074

脑磁共振图像 深度学习 医学图像合成 图注意力 位置编码

湖北省自然科学基金资助项目中央高校基本科研业务费专项资金资助项目

2008CDB392CZY22014

2024

中南民族大学学报(自然科学版)
中南民族大学

中南民族大学学报(自然科学版)

影响因子:0.536
ISSN:1672-4321
年,卷(期):2024.43(1)
  • 1